{"title":"细胞自动机本体、比特、量子比特和狄拉克方程","authors":"Hans-Thomas Elze","doi":"10.1142/s0219749924500138","DOIUrl":null,"url":null,"abstract":"<p>Cornerstones of the <i>Cellular Automaton Interpretation of Quantum Mechanics</i> are its ontological states that evolve by permutations, in this way never creating would-be quantum mechanical superposition states. We review and illustrate this with a classical Ising spin chain. It is shown that it can be related to the Weyl equation in the continuum limit. Yet, the model of discrete spins or bits unavoidably becomes a model of qubits by generating superpositions, if only slightly deformed. We study modifications of its signal velocity which, however, do not relate to mass terms. To incorporate the latter, we consider the Dirac equation in 1+1 dimensions and sketch an underlying discrete deterministic “necklace of necklaces” automaton that qualifies as ontological.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular automaton ontology, bits, qubits and the Dirac equation\",\"authors\":\"Hans-Thomas Elze\",\"doi\":\"10.1142/s0219749924500138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cornerstones of the <i>Cellular Automaton Interpretation of Quantum Mechanics</i> are its ontological states that evolve by permutations, in this way never creating would-be quantum mechanical superposition states. We review and illustrate this with a classical Ising spin chain. It is shown that it can be related to the Weyl equation in the continuum limit. Yet, the model of discrete spins or bits unavoidably becomes a model of qubits by generating superpositions, if only slightly deformed. We study modifications of its signal velocity which, however, do not relate to mass terms. To incorporate the latter, we consider the Dirac equation in 1+1 dimensions and sketch an underlying discrete deterministic “necklace of necklaces” automaton that qualifies as ontological.</p>\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749924500138\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749924500138","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Cellular automaton ontology, bits, qubits and the Dirac equation
Cornerstones of the Cellular Automaton Interpretation of Quantum Mechanics are its ontological states that evolve by permutations, in this way never creating would-be quantum mechanical superposition states. We review and illustrate this with a classical Ising spin chain. It is shown that it can be related to the Weyl equation in the continuum limit. Yet, the model of discrete spins or bits unavoidably becomes a model of qubits by generating superpositions, if only slightly deformed. We study modifications of its signal velocity which, however, do not relate to mass terms. To incorporate the latter, we consider the Dirac equation in 1+1 dimensions and sketch an underlying discrete deterministic “necklace of necklaces” automaton that qualifies as ontological.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.