David Mallasén;Alberto A. Del Barrio;Manuel Prieto-Matias
{"title":"Big-PERCIVAL:探索科学计算中 64 位正则表达式的本地使用","authors":"David Mallasén;Alberto A. Del Barrio;Manuel Prieto-Matias","doi":"10.1109/TC.2024.3377890","DOIUrl":null,"url":null,"abstract":"The accuracy requirements in many scientific computing workloads result in the use of double-precision floating-point arithmetic in the execution kernels. Nevertheless, emerging real-number representations, such as posit arithmetic, show promise in delivering even higher accuracy in such computations. In this work, we explore the native use of 64-bit posits in a series of numerical benchmarks and compare their timing performance, accuracy and hardware cost to IEEE 754 doubles. In addition, we also study the conjugate gradient method for numerically solving systems of linear equations in real-world applications. For this, we extend the PERCIVAL RISC-V core and the Xposit custom RISC-V extension with posit64 and quire operations. Results show that posit64 can obtain up to 4 orders of magnitude lower mean square error than doubles. This leads to a reduction in the number of iterations required for convergence in some iterative solvers. However, leveraging the quire accumulator register can limit the order of some operations such as matrix multiplications. Furthermore, detailed FPGA and ASIC synthesis results highlight the significant hardware cost of 64-bit posit arithmetic and quire. Despite this, the large accuracy improvements achieved with the same memory bandwidth suggest that posit arithmetic may provide a potential alternative representation for scientific computing.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 6","pages":"1472-1485"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10473215","citationCount":"0","resultStr":"{\"title\":\"Big-PERCIVAL: Exploring the Native Use of 64-Bit Posit Arithmetic in Scientific Computing\",\"authors\":\"David Mallasén;Alberto A. Del Barrio;Manuel Prieto-Matias\",\"doi\":\"10.1109/TC.2024.3377890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy requirements in many scientific computing workloads result in the use of double-precision floating-point arithmetic in the execution kernels. Nevertheless, emerging real-number representations, such as posit arithmetic, show promise in delivering even higher accuracy in such computations. In this work, we explore the native use of 64-bit posits in a series of numerical benchmarks and compare their timing performance, accuracy and hardware cost to IEEE 754 doubles. In addition, we also study the conjugate gradient method for numerically solving systems of linear equations in real-world applications. For this, we extend the PERCIVAL RISC-V core and the Xposit custom RISC-V extension with posit64 and quire operations. Results show that posit64 can obtain up to 4 orders of magnitude lower mean square error than doubles. This leads to a reduction in the number of iterations required for convergence in some iterative solvers. However, leveraging the quire accumulator register can limit the order of some operations such as matrix multiplications. Furthermore, detailed FPGA and ASIC synthesis results highlight the significant hardware cost of 64-bit posit arithmetic and quire. Despite this, the large accuracy improvements achieved with the same memory bandwidth suggest that posit arithmetic may provide a potential alternative representation for scientific computing.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 6\",\"pages\":\"1472-1485\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10473215\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10473215/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10473215/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Big-PERCIVAL: Exploring the Native Use of 64-Bit Posit Arithmetic in Scientific Computing
The accuracy requirements in many scientific computing workloads result in the use of double-precision floating-point arithmetic in the execution kernels. Nevertheless, emerging real-number representations, such as posit arithmetic, show promise in delivering even higher accuracy in such computations. In this work, we explore the native use of 64-bit posits in a series of numerical benchmarks and compare their timing performance, accuracy and hardware cost to IEEE 754 doubles. In addition, we also study the conjugate gradient method for numerically solving systems of linear equations in real-world applications. For this, we extend the PERCIVAL RISC-V core and the Xposit custom RISC-V extension with posit64 and quire operations. Results show that posit64 can obtain up to 4 orders of magnitude lower mean square error than doubles. This leads to a reduction in the number of iterations required for convergence in some iterative solvers. However, leveraging the quire accumulator register can limit the order of some operations such as matrix multiplications. Furthermore, detailed FPGA and ASIC synthesis results highlight the significant hardware cost of 64-bit posit arithmetic and quire. Despite this, the large accuracy improvements achieved with the same memory bandwidth suggest that posit arithmetic may provide a potential alternative representation for scientific computing.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.