Tianxing Wu, Lin Li, Huan Gao, Guilin Qi, Yuxiang Wang, Yuehua Li
{"title":"NPEL:网络表格中的神经配对实体链接","authors":"Tianxing Wu, Lin Li, Huan Gao, Guilin Qi, Yuxiang Wang, Yuehua Li","doi":"10.1145/3652511","DOIUrl":null,"url":null,"abstract":"<p>This paper studies entity linking (EL) in Web tables, which aims to link the string mentions in table cells to their referent entities in a knowledge base. Two main problems exist in previous studies: 1) contextual information is not well utilized in mention-entity similarity computation; 2) the assumption on entity coherence that all entities in the same row or column are highly related to each other is not always correct. In this paper, we propose <b>NPEL</b>, a new <b>N</b>eural <b>P</b>aired <b>E</b>ntity <b>L</b>inking framework, to overcome the above problems. In NPEL, we design a deep learning model with different neural networks and an attention mechanism, to model different kinds of contextual information of mentions and entities, for mention-entity similarity computation in Web tables. NPEL also relaxes the above assumption on entity coherence by a new paired entity linking algorithm, which iteratively selects two mentions with the highest confidence for EL. Experiments on real-world datasets exhibit that NPEL has the best performance compared with state-of-the-art baselines in different evaluation metrics.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NPEL: Neural Paired Entity Linking in Web Tables\",\"authors\":\"Tianxing Wu, Lin Li, Huan Gao, Guilin Qi, Yuxiang Wang, Yuehua Li\",\"doi\":\"10.1145/3652511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies entity linking (EL) in Web tables, which aims to link the string mentions in table cells to their referent entities in a knowledge base. Two main problems exist in previous studies: 1) contextual information is not well utilized in mention-entity similarity computation; 2) the assumption on entity coherence that all entities in the same row or column are highly related to each other is not always correct. In this paper, we propose <b>NPEL</b>, a new <b>N</b>eural <b>P</b>aired <b>E</b>ntity <b>L</b>inking framework, to overcome the above problems. In NPEL, we design a deep learning model with different neural networks and an attention mechanism, to model different kinds of contextual information of mentions and entities, for mention-entity similarity computation in Web tables. NPEL also relaxes the above assumption on entity coherence by a new paired entity linking algorithm, which iteratively selects two mentions with the highest confidence for EL. Experiments on real-world datasets exhibit that NPEL has the best performance compared with state-of-the-art baselines in different evaluation metrics.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3652511\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652511","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
This paper studies entity linking (EL) in Web tables, which aims to link the string mentions in table cells to their referent entities in a knowledge base. Two main problems exist in previous studies: 1) contextual information is not well utilized in mention-entity similarity computation; 2) the assumption on entity coherence that all entities in the same row or column are highly related to each other is not always correct. In this paper, we propose NPEL, a new Neural Paired Entity Linking framework, to overcome the above problems. In NPEL, we design a deep learning model with different neural networks and an attention mechanism, to model different kinds of contextual information of mentions and entities, for mention-entity similarity computation in Web tables. NPEL also relaxes the above assumption on entity coherence by a new paired entity linking algorithm, which iteratively selects two mentions with the highest confidence for EL. Experiments on real-world datasets exhibit that NPEL has the best performance compared with state-of-the-art baselines in different evaluation metrics.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.