{"title":"故障事件下地铁站进站客流的短期区间预测","authors":"Yichao Pu, Xiangdong Xu, Qianqi Fan, Shengyu Zhang, Jilai Chen","doi":"10.1155/2024/6833793","DOIUrl":null,"url":null,"abstract":"<p>Accurate forecasting of subway passenger flows is considered essential for the development of efficient train schedules. However, transport capacity constraints as well as station congestion can be caused by unexpected concerns with trains or power supply, which endanger passenger safety. Predicting passenger flows at the time of a fault is particularly challenging due to the low probability of failure and the complexity of the factors involved. In addition, deviation from the observed value may be resulted by the point-in-time prediction of passenger flow, thus affecting the efficiency of passenger flow control measures. To address this concern, a three-stage A-LSTM prediction model utilizing an attention mechanism and a double-layer LSTM (Long Short-Term Memory) neural network has been proposed. The model is used to map the impact of fault events on subway transport capacity with respect to delays onto the inbound passenger flow. By analyzing the data from the subway system in a metropolitan city of China, the range of passenger flow fluctuations in 10-minute intervals will be precisely predicted and applied to different subway stations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Interval Prediction of Inbound Passenger Flow of Subway Station under Failure Events\",\"authors\":\"Yichao Pu, Xiangdong Xu, Qianqi Fan, Shengyu Zhang, Jilai Chen\",\"doi\":\"10.1155/2024/6833793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate forecasting of subway passenger flows is considered essential for the development of efficient train schedules. However, transport capacity constraints as well as station congestion can be caused by unexpected concerns with trains or power supply, which endanger passenger safety. Predicting passenger flows at the time of a fault is particularly challenging due to the low probability of failure and the complexity of the factors involved. In addition, deviation from the observed value may be resulted by the point-in-time prediction of passenger flow, thus affecting the efficiency of passenger flow control measures. To address this concern, a three-stage A-LSTM prediction model utilizing an attention mechanism and a double-layer LSTM (Long Short-Term Memory) neural network has been proposed. The model is used to map the impact of fault events on subway transport capacity with respect to delays onto the inbound passenger flow. By analyzing the data from the subway system in a metropolitan city of China, the range of passenger flow fluctuations in 10-minute intervals will be precisely predicted and applied to different subway stations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6833793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6833793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Short-Term Interval Prediction of Inbound Passenger Flow of Subway Station under Failure Events
Accurate forecasting of subway passenger flows is considered essential for the development of efficient train schedules. However, transport capacity constraints as well as station congestion can be caused by unexpected concerns with trains or power supply, which endanger passenger safety. Predicting passenger flows at the time of a fault is particularly challenging due to the low probability of failure and the complexity of the factors involved. In addition, deviation from the observed value may be resulted by the point-in-time prediction of passenger flow, thus affecting the efficiency of passenger flow control measures. To address this concern, a three-stage A-LSTM prediction model utilizing an attention mechanism and a double-layer LSTM (Long Short-Term Memory) neural network has been proposed. The model is used to map the impact of fault events on subway transport capacity with respect to delays onto the inbound passenger flow. By analyzing the data from the subway system in a metropolitan city of China, the range of passenger flow fluctuations in 10-minute intervals will be precisely predicted and applied to different subway stations.