Costanza Montis, Elisa Marelli, Francesco Valle, Francesca Baldelli Bombelli and Claudia Pigliacelli
{"title":"短抗菌肽与细菌屏障的相互作用工程学","authors":"Costanza Montis, Elisa Marelli, Francesco Valle, Francesca Baldelli Bombelli and Claudia Pigliacelli","doi":"10.1039/D4ME00021H","DOIUrl":null,"url":null,"abstract":"<p >While the rise of superbugs and new resistance mechanisms continues decreasing the effectiveness of classical antibiotics, antimicrobial peptides (AMPs) are emerging as a new class of antimicrobials. Still, several drawbacks limit their transition to the clinic, including high production cost, haemolytic activity and possible inactivation by proteases. Here, we give an overview of the most recent work on short AMPs, which are currently a minority in the AMP databases, and of the main AMP design rules, describing their application for short sequences. We also summarize the techniques that can serve to investigate the key steps of the antimicrobial action and that can aid in the engineering of a tuned AMP interaction with bacterial barriers. Particular emphasis is given to the relationship between peptide sequence features and interfacial behaviour, highlighting the role of AMPs self-assembly in the interaction with membranes and their antimicrobial activity.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 6","pages":" 541-560"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d4me00021h?page=search","citationCount":"0","resultStr":"{\"title\":\"Engineering the interaction of short antimicrobial peptides with bacterial barriers\",\"authors\":\"Costanza Montis, Elisa Marelli, Francesco Valle, Francesca Baldelli Bombelli and Claudia Pigliacelli\",\"doi\":\"10.1039/D4ME00021H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >While the rise of superbugs and new resistance mechanisms continues decreasing the effectiveness of classical antibiotics, antimicrobial peptides (AMPs) are emerging as a new class of antimicrobials. Still, several drawbacks limit their transition to the clinic, including high production cost, haemolytic activity and possible inactivation by proteases. Here, we give an overview of the most recent work on short AMPs, which are currently a minority in the AMP databases, and of the main AMP design rules, describing their application for short sequences. We also summarize the techniques that can serve to investigate the key steps of the antimicrobial action and that can aid in the engineering of a tuned AMP interaction with bacterial barriers. Particular emphasis is given to the relationship between peptide sequence features and interfacial behaviour, highlighting the role of AMPs self-assembly in the interaction with membranes and their antimicrobial activity.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 6\",\"pages\":\" 541-560\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/me/d4me00021h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d4me00021h\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d4me00021h","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Engineering the interaction of short antimicrobial peptides with bacterial barriers
While the rise of superbugs and new resistance mechanisms continues decreasing the effectiveness of classical antibiotics, antimicrobial peptides (AMPs) are emerging as a new class of antimicrobials. Still, several drawbacks limit their transition to the clinic, including high production cost, haemolytic activity and possible inactivation by proteases. Here, we give an overview of the most recent work on short AMPs, which are currently a minority in the AMP databases, and of the main AMP design rules, describing their application for short sequences. We also summarize the techniques that can serve to investigate the key steps of the antimicrobial action and that can aid in the engineering of a tuned AMP interaction with bacterial barriers. Particular emphasis is given to the relationship between peptide sequence features and interfacial behaviour, highlighting the role of AMPs self-assembly in the interaction with membranes and their antimicrobial activity.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.