Amanda Carrico , Loanda R. Cumba , Miguel Medina , Tobias Engel , Robert J. Forster
{"title":"超灵敏、无标记、电化学检测人体血浆中的 miRNA-206:与阿尔茨海默病相关的潜在生物标记物","authors":"Amanda Carrico , Loanda R. Cumba , Miguel Medina , Tobias Engel , Robert J. Forster","doi":"10.1016/j.elecom.2024.107704","DOIUrl":null,"url":null,"abstract":"<div><p>An impedance-based biosensor for the ultrasensitive, selective, and label-free detection of a blood miRNA associated to Alzheimer disease (AD), miRNA-206, was developed. The principle was grounded in the changes in the charge transfer resistance (R<sub>CT</sub>) as an effect of intramolecular forces between miRNAs and ferro/ferricyanide in a well-structured transducer platform. A compact well-ordered mixed monolayer made of co-immobilized miRNA capture to 6-mercapto-1-hexanol (MCH) in a 1:4 M ratio (at 37 °C), uplifted the performance of the sensor through effectively assisting the orientation of the oligonucleotides. In this work, the remarkable response of the sensor was generated through new insights into the use of different moieties of miRNA capture to MCH, aiming to control interfacial constants, surface densities, and hybridization efficiency.A very low limit of detection, 0.15 aM, is achieved and the sensor has a wide linear dynamic range (from 1 aM to 1 μM), high selectivity to mismatches, low non-specific binding of proteins (BSA) and good stability (<10 % change in response after 14 days storage). Importantly, the sensor successfully measured miRNA-206 concentrations in real plasma samples (>95 % recovery), correlating directly with qPCR results. Nanomolar concentrations of miRNA-206 were found in the plasma of confirmed AD patients, while healthy controls, had a concentration of pM or lower. The biosensor's ability to quantitatively detect miRNA-206 in plasma without target amplification, e.g., using PCR, is significant, opening the possibility of developing a point-of-care diagnostic device for AD screening, contributing to clinical trials and patient care.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"162 ","pages":"Article 107704"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400047X/pdfft?md5=735901ef481a612e9881729345cba1e8&pid=1-s2.0-S138824812400047X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive, label-free, electrochemical detection of miRNA-206 in human plasma: A potential biomarker associated with Alzheimer’s disease\",\"authors\":\"Amanda Carrico , Loanda R. Cumba , Miguel Medina , Tobias Engel , Robert J. Forster\",\"doi\":\"10.1016/j.elecom.2024.107704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An impedance-based biosensor for the ultrasensitive, selective, and label-free detection of a blood miRNA associated to Alzheimer disease (AD), miRNA-206, was developed. The principle was grounded in the changes in the charge transfer resistance (R<sub>CT</sub>) as an effect of intramolecular forces between miRNAs and ferro/ferricyanide in a well-structured transducer platform. A compact well-ordered mixed monolayer made of co-immobilized miRNA capture to 6-mercapto-1-hexanol (MCH) in a 1:4 M ratio (at 37 °C), uplifted the performance of the sensor through effectively assisting the orientation of the oligonucleotides. In this work, the remarkable response of the sensor was generated through new insights into the use of different moieties of miRNA capture to MCH, aiming to control interfacial constants, surface densities, and hybridization efficiency.A very low limit of detection, 0.15 aM, is achieved and the sensor has a wide linear dynamic range (from 1 aM to 1 μM), high selectivity to mismatches, low non-specific binding of proteins (BSA) and good stability (<10 % change in response after 14 days storage). Importantly, the sensor successfully measured miRNA-206 concentrations in real plasma samples (>95 % recovery), correlating directly with qPCR results. Nanomolar concentrations of miRNA-206 were found in the plasma of confirmed AD patients, while healthy controls, had a concentration of pM or lower. The biosensor's ability to quantitatively detect miRNA-206 in plasma without target amplification, e.g., using PCR, is significant, opening the possibility of developing a point-of-care diagnostic device for AD screening, contributing to clinical trials and patient care.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"162 \",\"pages\":\"Article 107704\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S138824812400047X/pdfft?md5=735901ef481a612e9881729345cba1e8&pid=1-s2.0-S138824812400047X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138824812400047X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400047X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Ultrasensitive, label-free, electrochemical detection of miRNA-206 in human plasma: A potential biomarker associated with Alzheimer’s disease
An impedance-based biosensor for the ultrasensitive, selective, and label-free detection of a blood miRNA associated to Alzheimer disease (AD), miRNA-206, was developed. The principle was grounded in the changes in the charge transfer resistance (RCT) as an effect of intramolecular forces between miRNAs and ferro/ferricyanide in a well-structured transducer platform. A compact well-ordered mixed monolayer made of co-immobilized miRNA capture to 6-mercapto-1-hexanol (MCH) in a 1:4 M ratio (at 37 °C), uplifted the performance of the sensor through effectively assisting the orientation of the oligonucleotides. In this work, the remarkable response of the sensor was generated through new insights into the use of different moieties of miRNA capture to MCH, aiming to control interfacial constants, surface densities, and hybridization efficiency.A very low limit of detection, 0.15 aM, is achieved and the sensor has a wide linear dynamic range (from 1 aM to 1 μM), high selectivity to mismatches, low non-specific binding of proteins (BSA) and good stability (<10 % change in response after 14 days storage). Importantly, the sensor successfully measured miRNA-206 concentrations in real plasma samples (>95 % recovery), correlating directly with qPCR results. Nanomolar concentrations of miRNA-206 were found in the plasma of confirmed AD patients, while healthy controls, had a concentration of pM or lower. The biosensor's ability to quantitatively detect miRNA-206 in plasma without target amplification, e.g., using PCR, is significant, opening the possibility of developing a point-of-care diagnostic device for AD screening, contributing to clinical trials and patient care.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.