利用数值和分析技术了解超声波振动辅助钻孔(UVAD)在硅晶片上形成微孔的机理

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Advanced Manufacturing Technology Pub Date : 2024-03-20 DOI:10.1007/s00170-024-13412-2
Rendi Kurniawan, Shuo Chen, Moran Xu, Hanwei Teng, Jielin Chen, Saood Ali, Pil-Wan Han, Gandjar Kiswanto, Sundaresan Thirumalai Kumaran, Tae Jo Ko
{"title":"利用数值和分析技术了解超声波振动辅助钻孔(UVAD)在硅晶片上形成微孔的机理","authors":"Rendi Kurniawan, Shuo Chen, Moran Xu, Hanwei Teng, Jielin Chen, Saood Ali, Pil-Wan Han, Gandjar Kiswanto, Sundaresan Thirumalai Kumaran, Tae Jo Ko","doi":"10.1007/s00170-024-13412-2","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the mechanism of UVAD using numerical and analytical techniques. Silicon wafers possess challenging cutting properties due to their inherent brittleness and susceptibility to cracking along specific crystal orientation. Hence, non-traditional cutting methods like UVAD hold promise for precision micro-hole drilling in silicon wafers. In order to comprehend the mechanism of UVAD, the numerical technique utilized a direct brittle micro-cracking model within a 2D finite element (FE) method. This facilitated a comparative analysis between conventional drilling (CD) and UVAD, with a specific focus on understanding the micro-cracking mechanisms during the mechanical process. This study examined primarily the cutting force, micro-fracture analysis, and cutting energy. The numerical technique effectively predicted micro-cracks within the brittle regime, a task that is challenging to accomplish using analytical methods alone. In parallel, an analytical technique was developed to predict brittle-ductile transition (BDT) lines by analyzing the thrust force and specific cutting energy (SCE), combined with the numerical technique. Various feed rates per revolution were tested to validate the analytical force predictions. The analytical results demonstrate that the force profile corresponds to the transient cutting depth, while the numerical results indicated that the direct brittle micro-cracking model effectively demonstrated the fracture mechanisms, particularly at greater depths of cut. The SCE graph can predict the formation of a ductile regime on the cutting surface of the drilled micro-hole, although predicting micro-fractures on the side edges of the drilled micro-holes remains challenging. Additionally, UVAD demonstrated a reduction in micro-fractures on the sides of drilled micro-holes, particularly at very low feed rates per revolution.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"85 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the mechanism of ultrasonic vibration-assisted drilling (UVAD) for micro-hole formation on silicon wafers using numerical and analytical techniques\",\"authors\":\"Rendi Kurniawan, Shuo Chen, Moran Xu, Hanwei Teng, Jielin Chen, Saood Ali, Pil-Wan Han, Gandjar Kiswanto, Sundaresan Thirumalai Kumaran, Tae Jo Ko\",\"doi\":\"10.1007/s00170-024-13412-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the mechanism of UVAD using numerical and analytical techniques. Silicon wafers possess challenging cutting properties due to their inherent brittleness and susceptibility to cracking along specific crystal orientation. Hence, non-traditional cutting methods like UVAD hold promise for precision micro-hole drilling in silicon wafers. In order to comprehend the mechanism of UVAD, the numerical technique utilized a direct brittle micro-cracking model within a 2D finite element (FE) method. This facilitated a comparative analysis between conventional drilling (CD) and UVAD, with a specific focus on understanding the micro-cracking mechanisms during the mechanical process. This study examined primarily the cutting force, micro-fracture analysis, and cutting energy. The numerical technique effectively predicted micro-cracks within the brittle regime, a task that is challenging to accomplish using analytical methods alone. In parallel, an analytical technique was developed to predict brittle-ductile transition (BDT) lines by analyzing the thrust force and specific cutting energy (SCE), combined with the numerical technique. Various feed rates per revolution were tested to validate the analytical force predictions. The analytical results demonstrate that the force profile corresponds to the transient cutting depth, while the numerical results indicated that the direct brittle micro-cracking model effectively demonstrated the fracture mechanisms, particularly at greater depths of cut. The SCE graph can predict the formation of a ductile regime on the cutting surface of the drilled micro-hole, although predicting micro-fractures on the side edges of the drilled micro-holes remains challenging. Additionally, UVAD demonstrated a reduction in micro-fractures on the sides of drilled micro-holes, particularly at very low feed rates per revolution.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13412-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13412-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用数值和分析技术研究了 UVAD 的机理。硅晶片因其固有的脆性和沿特定晶体取向的易开裂性而具有极具挑战性的切割特性。因此,UVAD 等非传统切割方法有望在硅晶片上实现精密微孔钻孔。为了理解 UVAD 的机理,数值技术利用了二维有限元(FE)方法中的直接脆性微裂纹模型。这有助于对传统钻孔(CD)和 UVAD 进行比较分析,重点是了解机械过程中的微裂纹机制。这项研究主要考察了切削力、微裂纹分析和切削能量。数值技术有效地预测了脆性体系中的微裂纹,而这是仅使用分析方法难以完成的任务。与此同时,还开发了一种分析技术,通过分析推力和特定切削能量 (SCE),结合数值技术来预测脆性-韧性转变 (BDT) 线。测试了各种每转进给量,以验证分析力预测。分析结果表明,力曲线与瞬时切割深度相对应,而数值结果表明,直接脆性微裂纹模型有效地展示了断裂机制,尤其是在切割深度较大时。SCE 图形可以预测钻孔微孔切割面上韧性机制的形成,不过预测钻孔微孔侧缘的微断裂仍具有挑战性。此外,UVAD 显示钻过的微孔侧边的微裂纹有所减少,特别是在每转进给量很低的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the mechanism of ultrasonic vibration-assisted drilling (UVAD) for micro-hole formation on silicon wafers using numerical and analytical techniques

This study investigated the mechanism of UVAD using numerical and analytical techniques. Silicon wafers possess challenging cutting properties due to their inherent brittleness and susceptibility to cracking along specific crystal orientation. Hence, non-traditional cutting methods like UVAD hold promise for precision micro-hole drilling in silicon wafers. In order to comprehend the mechanism of UVAD, the numerical technique utilized a direct brittle micro-cracking model within a 2D finite element (FE) method. This facilitated a comparative analysis between conventional drilling (CD) and UVAD, with a specific focus on understanding the micro-cracking mechanisms during the mechanical process. This study examined primarily the cutting force, micro-fracture analysis, and cutting energy. The numerical technique effectively predicted micro-cracks within the brittle regime, a task that is challenging to accomplish using analytical methods alone. In parallel, an analytical technique was developed to predict brittle-ductile transition (BDT) lines by analyzing the thrust force and specific cutting energy (SCE), combined with the numerical technique. Various feed rates per revolution were tested to validate the analytical force predictions. The analytical results demonstrate that the force profile corresponds to the transient cutting depth, while the numerical results indicated that the direct brittle micro-cracking model effectively demonstrated the fracture mechanisms, particularly at greater depths of cut. The SCE graph can predict the formation of a ductile regime on the cutting surface of the drilled micro-hole, although predicting micro-fractures on the side edges of the drilled micro-holes remains challenging. Additionally, UVAD demonstrated a reduction in micro-fractures on the sides of drilled micro-holes, particularly at very low feed rates per revolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
期刊最新文献
Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality On a simulation-based chatter prediction system by integrating relative entropy and dynamic cutting force Modeling of the motorized spindle temperature field considering the thermos-mechanical coupling on constant pressure preloaded bearings Multi-layer solid-state ultrasonic additive manufacturing of aluminum/copper: local properties and texture Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1