用于超宽带应用的紧凑型高隔离四元件天线系统

IF 1.2 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Antennas and Propagation Pub Date : 2024-03-20 DOI:10.1155/2024/3153057
V. Prithivirajan, Mariya Princy Antony Saviour, J. Seetha, B. Siva Kumar Reddy, Anand Anbalagan, D. Rajesh Kumar
{"title":"用于超宽带应用的紧凑型高隔离四元件天线系统","authors":"V. Prithivirajan, Mariya Princy Antony Saviour, J. Seetha, B. Siva Kumar Reddy, Anand Anbalagan, D. Rajesh Kumar","doi":"10.1155/2024/3153057","DOIUrl":null,"url":null,"abstract":"A small, orthogonally polarized, ultra-wideband (UWB), four-port multiple-input multiple-output (MIMO) printed antenna is presented in this study. The envisioned antenna is built up of four microstrip fractal-based circular patch elements, each of which is fed by a microstrip line with a 50-ohm impedance. The use of a defective ground plane allows for the ultra-wideband frequency response to be obtained. In order to achieve maximal isolation, the amount of surface current that flow between the antenna’s four components is limited by arranging radiating elements orthogonally. The four-port MIMO system is printed on a FR4 substrate with a loss tangent of 0.02 and an overall dimension of 20 × 30 × 1.6 mm<sup>3</sup>. A port-to-port isolation of less than 25 dB was achieved as a consequence of this orthogonal orientation of antenna elements, and the impedance bandwidth is achieved up to 158% (3.1–12 GHz). The suggested ultra-wideband multiple-input multiple-output (UWB-MIMO) antenna achieved a maximum gain of 8 dBi over the operational frequency range (3.1–12 GHz); the findings that were measured and those that were simulated accord with one another rather well. The findings also give an overall strong diversity performance, with the ECC &lt; 0.25, DG &gt; 9.9, and CCL &lt; 0.2 values all being within acceptable ranges.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"48 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compact Highly Isolated Four-Element Antenna System for Ultra-Wideband Applications\",\"authors\":\"V. Prithivirajan, Mariya Princy Antony Saviour, J. Seetha, B. Siva Kumar Reddy, Anand Anbalagan, D. Rajesh Kumar\",\"doi\":\"10.1155/2024/3153057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A small, orthogonally polarized, ultra-wideband (UWB), four-port multiple-input multiple-output (MIMO) printed antenna is presented in this study. The envisioned antenna is built up of four microstrip fractal-based circular patch elements, each of which is fed by a microstrip line with a 50-ohm impedance. The use of a defective ground plane allows for the ultra-wideband frequency response to be obtained. In order to achieve maximal isolation, the amount of surface current that flow between the antenna’s four components is limited by arranging radiating elements orthogonally. The four-port MIMO system is printed on a FR4 substrate with a loss tangent of 0.02 and an overall dimension of 20 × 30 × 1.6 mm<sup>3</sup>. A port-to-port isolation of less than 25 dB was achieved as a consequence of this orthogonal orientation of antenna elements, and the impedance bandwidth is achieved up to 158% (3.1–12 GHz). The suggested ultra-wideband multiple-input multiple-output (UWB-MIMO) antenna achieved a maximum gain of 8 dBi over the operational frequency range (3.1–12 GHz); the findings that were measured and those that were simulated accord with one another rather well. The findings also give an overall strong diversity performance, with the ECC &lt; 0.25, DG &gt; 9.9, and CCL &lt; 0.2 values all being within acceptable ranges.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3153057\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/3153057","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种小型、正交极化、超宽带 (UWB)、四端口多输入多输出 (MIMO) 印刷天线。设想中的天线由四个基于微带分形的圆形贴片元件组成,每个贴片元件由一条阻抗为 50 欧姆的微带线馈电。使用缺陷接地平面可获得超宽带频率响应。为了实现最大隔离度,通过正交排列辐射元件来限制天线四个元件之间的表面电流。四端口多输入多输出系统印制在损耗正切为 0.02、总尺寸为 20 × 30 × 1.6 mm3 的 FR4 基板上。由于天线元件的正交方向,端口与端口之间的隔离度小于 25 dB,阻抗带宽高达 158%(3.1-12 GHz)。所建议的超宽带多输入多输出(UWB-MIMO)天线在工作频率范围(3.1-12 GHz)内实现了 8 dBi 的最大增益;测量结果与模拟结果相当吻合。测量结果还显示出较强的总体分集性能,ECC <0.25、DG >9.9 和 CCL <0.2 值均在可接受范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Compact Highly Isolated Four-Element Antenna System for Ultra-Wideband Applications
A small, orthogonally polarized, ultra-wideband (UWB), four-port multiple-input multiple-output (MIMO) printed antenna is presented in this study. The envisioned antenna is built up of four microstrip fractal-based circular patch elements, each of which is fed by a microstrip line with a 50-ohm impedance. The use of a defective ground plane allows for the ultra-wideband frequency response to be obtained. In order to achieve maximal isolation, the amount of surface current that flow between the antenna’s four components is limited by arranging radiating elements orthogonally. The four-port MIMO system is printed on a FR4 substrate with a loss tangent of 0.02 and an overall dimension of 20 × 30 × 1.6 mm3. A port-to-port isolation of less than 25 dB was achieved as a consequence of this orthogonal orientation of antenna elements, and the impedance bandwidth is achieved up to 158% (3.1–12 GHz). The suggested ultra-wideband multiple-input multiple-output (UWB-MIMO) antenna achieved a maximum gain of 8 dBi over the operational frequency range (3.1–12 GHz); the findings that were measured and those that were simulated accord with one another rather well. The findings also give an overall strong diversity performance, with the ECC < 0.25, DG > 9.9, and CCL < 0.2 values all being within acceptable ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Antennas and Propagation
International Journal of Antennas and Propagation ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.10
自引率
13.30%
发文量
158
审稿时长
3.8 months
期刊介绍: International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media. As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Measurement of High-Power Microwave Impulse Response Characteristics of Reflector Materials A Simultaneous Study on Wire-Loop, Plate-Loop, and Plate Antennas for Wideband Circular Polarization Extracting Pole Characteristics of Complex Radar Targets for the Aircraft in Resonance Region Using RMSPSO_ARMA Safety Assessment of Electromagnetic Environmental Exposure for GPS Antenna of Electric Vehicle Design of the Monopulse Feeding Network for a Slotted Waveguide Array on an Annular Disk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1