揭示零间隙二氧化碳电解槽中铯和水的传输机制

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-06-19 DOI:10.1016/j.joule.2024.02.027
Bjørt Óladóttir Joensen , José A. Zamora Zeledón , Lena Trotochaud , Andrea Sartori , Marta Mirolo , Asger Barkholt Moss , Sahil Garg , Ib Chorkendorff , Jakub Drnec , Brian Seger , Qiucheng Xu
{"title":"揭示零间隙二氧化碳电解槽中铯和水的传输机制","authors":"Bjørt Óladóttir Joensen ,&nbsp;José A. Zamora Zeledón ,&nbsp;Lena Trotochaud ,&nbsp;Andrea Sartori ,&nbsp;Marta Mirolo ,&nbsp;Asger Barkholt Moss ,&nbsp;Sahil Garg ,&nbsp;Ib Chorkendorff ,&nbsp;Jakub Drnec ,&nbsp;Brian Seger ,&nbsp;Qiucheng Xu","doi":"10.1016/j.joule.2024.02.027","DOIUrl":null,"url":null,"abstract":"<div><p>In zero-gap CO<sub>2</sub> electrolyzers, maintaining the balance of water and cations is crucial. Excessive accumulation at the cathode causes performance degradation, leading to flooding and salt precipitation. Using <em>operando</em> wide-angle X-ray scattering and X-ray fluorescence techniques, we observed the dynamic evolution of H<sub>2</sub>O and Cs<sup>+</sup> inside a membrane electrode assembly. Our findings indicate that Cs<sup>+</sup> movement across the membrane from the anode to the cathode is governed by migration and drags H<sub>2</sub>O via electroosmosis. H<sub>2</sub>O diffusion then allows Cs<sup>+</sup> diffusion further within the gas diffusion electrode. When decreasing the applied voltage, the concentration gradient causes Cs<sup>+</sup> to quickly diffuse back to the anode. The H<sub>2</sub>O content in the macro-porous layer remains at the same level, thus showcasing an origin of gas diffusion electrode (GDE) flooding. By regulating the electrolyte concentration, we deconvolute the correlation of water and cations for selectivity changes. Our work underscores the significance of water/cation management strategies in zero-gap electrolyzers.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers\",\"authors\":\"Bjørt Óladóttir Joensen ,&nbsp;José A. Zamora Zeledón ,&nbsp;Lena Trotochaud ,&nbsp;Andrea Sartori ,&nbsp;Marta Mirolo ,&nbsp;Asger Barkholt Moss ,&nbsp;Sahil Garg ,&nbsp;Ib Chorkendorff ,&nbsp;Jakub Drnec ,&nbsp;Brian Seger ,&nbsp;Qiucheng Xu\",\"doi\":\"10.1016/j.joule.2024.02.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In zero-gap CO<sub>2</sub> electrolyzers, maintaining the balance of water and cations is crucial. Excessive accumulation at the cathode causes performance degradation, leading to flooding and salt precipitation. Using <em>operando</em> wide-angle X-ray scattering and X-ray fluorescence techniques, we observed the dynamic evolution of H<sub>2</sub>O and Cs<sup>+</sup> inside a membrane electrode assembly. Our findings indicate that Cs<sup>+</sup> movement across the membrane from the anode to the cathode is governed by migration and drags H<sub>2</sub>O via electroosmosis. H<sub>2</sub>O diffusion then allows Cs<sup>+</sup> diffusion further within the gas diffusion electrode. When decreasing the applied voltage, the concentration gradient causes Cs<sup>+</sup> to quickly diffuse back to the anode. The H<sub>2</sub>O content in the macro-porous layer remains at the same level, thus showcasing an origin of gas diffusion electrode (GDE) flooding. By regulating the electrolyte concentration, we deconvolute the correlation of water and cations for selectivity changes. Our work underscores the significance of water/cation management strategies in zero-gap electrolyzers.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124001107\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124001107","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在零间隙一氧化碳电解槽中,保持水和阳离子的平衡至关重要。阴极的过度积累会导致性能下降,造成水浸和盐沉淀。我们利用广角 X 射线散射和 X 射线荧光技术,观察了膜电极组件内 HO 和 Cs 的动态演变。我们的研究结果表明,Cs 在膜上从阳极向阴极的移动受迁移的支配,并通过电渗作用拖动 HO。然后,HO 扩散允许 Cs 在气体扩散电极内进一步扩散。当降低外加电压时,浓度梯度会使 Cs 迅速扩散回阳极。大孔层中的 HO 含量保持不变,从而显示了气体扩散电极(GDE)泛滥的起源。通过调节电解质浓度,我们解除了水和阳离子对选择性变化的相关性。我们的工作强调了零间隙电解槽中水/阳离子管理策略的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers

In zero-gap CO2 electrolyzers, maintaining the balance of water and cations is crucial. Excessive accumulation at the cathode causes performance degradation, leading to flooding and salt precipitation. Using operando wide-angle X-ray scattering and X-ray fluorescence techniques, we observed the dynamic evolution of H2O and Cs+ inside a membrane electrode assembly. Our findings indicate that Cs+ movement across the membrane from the anode to the cathode is governed by migration and drags H2O via electroosmosis. H2O diffusion then allows Cs+ diffusion further within the gas diffusion electrode. When decreasing the applied voltage, the concentration gradient causes Cs+ to quickly diffuse back to the anode. The H2O content in the macro-porous layer remains at the same level, thus showcasing an origin of gas diffusion electrode (GDE) flooding. By regulating the electrolyte concentration, we deconvolute the correlation of water and cations for selectivity changes. Our work underscores the significance of water/cation management strategies in zero-gap electrolyzers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Scalability and stability in CO2 reduction via tomography-guided system design Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recycling Binary cations minimize energy loss in the wide-band-gap perovskite toward efficient all-perovskite tandem solar cells Temperature excavation to boost machine learning battery thermochemical predictions Hyping direct seawater electrolysis hinders electrolyzer development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1