{"title":"基于量子点的荧光链接免疫吸附测定法,用于快速检测动物源食品中的洛美沙星。","authors":"Aiping Wang, Yihong Wen, Xifang Zhu, Jingming Zhou, Yumei Chen, Hongliang Liu, Chao Liang, Enping Liu, Ying Zhang, Guoping Ai, Zhang Gaiping","doi":"10.1080/19440049.2023.2267144","DOIUrl":null,"url":null,"abstract":"<p><p>Lomefloxacin (LMF), a third-generation fluoroquinolone antibacterial agent, is often used to treat bacterial and mycoplasma infections. However, due to its prolonged half-life and slow metabolism, it is prone to residues in animal-derived foods, posing a potential food safety risk. Therefore, it is particularly urgent and important to establish a method for detecting lomefloxacin. In this study, direct and indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) based on quantum dots (QDs) was established for the detection of LMF. As for dc-FLISA, the half-maximal inhibitory concentration (IC<sub>50</sub>) and limit of detection (LOD) were 0.84 ng/mL, 0.04 ng/mL, respectively, the detection ranges from 0.08 to 9.11 ng/mL. The IC<sub>50</sub> and LOD of ic-FLISA were 0.43 ng/mL and 0.03 ng/mL, respectively, meanwhile the detection ranges from 0.05 to 3.49 ng/mL. The recoveries of dc-FLISA and ic-FLISA in animal-derived foods (milk, fish, chicken, and honey), ranged from 95.8% to 105.2% and from 96.3% to 103.4%, respectively, with the coefficients of variation less than 8%. These results suggest that the dc-FLISA and ic-FLISA methods, which are based on QD labelling, are highly sensitive and cost-effective, and can be effectively used to detect LMF in animal-derived foods.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"513-524"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum dot-based fluorescence-linked immunosorbent assay for the rapid detection of lomefloxacin in animal-derived foods.\",\"authors\":\"Aiping Wang, Yihong Wen, Xifang Zhu, Jingming Zhou, Yumei Chen, Hongliang Liu, Chao Liang, Enping Liu, Ying Zhang, Guoping Ai, Zhang Gaiping\",\"doi\":\"10.1080/19440049.2023.2267144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lomefloxacin (LMF), a third-generation fluoroquinolone antibacterial agent, is often used to treat bacterial and mycoplasma infections. However, due to its prolonged half-life and slow metabolism, it is prone to residues in animal-derived foods, posing a potential food safety risk. Therefore, it is particularly urgent and important to establish a method for detecting lomefloxacin. In this study, direct and indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) based on quantum dots (QDs) was established for the detection of LMF. As for dc-FLISA, the half-maximal inhibitory concentration (IC<sub>50</sub>) and limit of detection (LOD) were 0.84 ng/mL, 0.04 ng/mL, respectively, the detection ranges from 0.08 to 9.11 ng/mL. The IC<sub>50</sub> and LOD of ic-FLISA were 0.43 ng/mL and 0.03 ng/mL, respectively, meanwhile the detection ranges from 0.05 to 3.49 ng/mL. The recoveries of dc-FLISA and ic-FLISA in animal-derived foods (milk, fish, chicken, and honey), ranged from 95.8% to 105.2% and from 96.3% to 103.4%, respectively, with the coefficients of variation less than 8%. These results suggest that the dc-FLISA and ic-FLISA methods, which are based on QD labelling, are highly sensitive and cost-effective, and can be effectively used to detect LMF in animal-derived foods.</p>\",\"PeriodicalId\":12295,\"journal\":{\"name\":\"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment\",\"volume\":\" \",\"pages\":\"513-524\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/19440049.2023.2267144\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19440049.2023.2267144","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Quantum dot-based fluorescence-linked immunosorbent assay for the rapid detection of lomefloxacin in animal-derived foods.
Lomefloxacin (LMF), a third-generation fluoroquinolone antibacterial agent, is often used to treat bacterial and mycoplasma infections. However, due to its prolonged half-life and slow metabolism, it is prone to residues in animal-derived foods, posing a potential food safety risk. Therefore, it is particularly urgent and important to establish a method for detecting lomefloxacin. In this study, direct and indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) based on quantum dots (QDs) was established for the detection of LMF. As for dc-FLISA, the half-maximal inhibitory concentration (IC50) and limit of detection (LOD) were 0.84 ng/mL, 0.04 ng/mL, respectively, the detection ranges from 0.08 to 9.11 ng/mL. The IC50 and LOD of ic-FLISA were 0.43 ng/mL and 0.03 ng/mL, respectively, meanwhile the detection ranges from 0.05 to 3.49 ng/mL. The recoveries of dc-FLISA and ic-FLISA in animal-derived foods (milk, fish, chicken, and honey), ranged from 95.8% to 105.2% and from 96.3% to 103.4%, respectively, with the coefficients of variation less than 8%. These results suggest that the dc-FLISA and ic-FLISA methods, which are based on QD labelling, are highly sensitive and cost-effective, and can be effectively used to detect LMF in animal-derived foods.
期刊介绍:
Food Additives & Contaminants: Part A publishes original research papers and critical reviews covering analytical methodology, occurrence, persistence, safety evaluation, detoxification and regulatory control of natural and man-made additives and contaminants in the food and animal feed chain. Papers are published in the areas of food additives including flavourings, pesticide and veterinary drug residues, environmental contaminants, plant toxins, mycotoxins, marine biotoxins, trace elements, migration from food packaging, food process contaminants, adulteration, authenticity and allergenicity of foods. Papers are published on animal feed where residues and contaminants can give rise to food safety concerns. Contributions cover chemistry, biochemistry and bioavailability of these substances, factors affecting levels during production, processing, packaging and storage; the development of novel foods and processes; exposure and risk assessment.