Kelvin H Bates, Mathew J Evans, Barron H Henderson, Daniel J Jacob
{"title":"更新反应动力学对全球 GEOS-Chem 大气化学模拟的影响。","authors":"Kelvin H Bates, Mathew J Evans, Barron H Henderson, Daniel J Jacob","doi":"10.5194/gmd-17-1511-2024","DOIUrl":null,"url":null,"abstract":"<p><p>We updated the chemical mechanism of the GEOS-Chem global 3-D model of atmospheric chemistry to include new recommendations from the NASA Jet Propulsion Laboratory (JPL) chemical kinetics Data Evaluation 19-5 and from the International Union of Pure and Applied Chemistry (IUPAC) and to balance carbon and nitrogen. We examined the impact of these updates on the GEOS-Chem version 14.0.1 simulation. Notable changes include 11 updates to reactions of reactive nitrogen species, resulting in a 7% net increase in the stratospheric NO<sub><i>x</i></sub> (NO + NO<sub>2</sub>) burden; an updated CO + OH rate formula leading to a 2.7% reduction in total tropospheric CO; adjustments to the rate coefficient and branching ratios of propane + OH, leading to reduced tropospheric propane (-17%) and increased acetone (+3.5%) burdens; a 41% increase in the tropospheric burden of peroxyacetic acid due to a decrease in the rate coefficient for its reaction with OH, further contributing to reductions in peroxyacetyl nitrate (PAN; -3.8%) and acetic acid (-3.4%); and a number of minor adjustments to halogen radical cycling. Changes to the global tropospheric burdens of other species include -0.7% for ozone, +0.3% for OH (-0.4% for methane lifetime against oxidation by tropospheric OH), +0.8% for formaldehyde, and -1.7% for NO<sub><i>x</i></sub>. The updated mechanism reflects the current state of the science, including complex chemical dependencies of key atmospheric species on temperature, pressure, and concentrations of other compounds. The improved conservation of carbon and nitrogen will facilitate future studies of their overall atmospheric budgets.</p>","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"7 4","pages":"1511-1524"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953788/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry.\",\"authors\":\"Kelvin H Bates, Mathew J Evans, Barron H Henderson, Daniel J Jacob\",\"doi\":\"10.5194/gmd-17-1511-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We updated the chemical mechanism of the GEOS-Chem global 3-D model of atmospheric chemistry to include new recommendations from the NASA Jet Propulsion Laboratory (JPL) chemical kinetics Data Evaluation 19-5 and from the International Union of Pure and Applied Chemistry (IUPAC) and to balance carbon and nitrogen. We examined the impact of these updates on the GEOS-Chem version 14.0.1 simulation. Notable changes include 11 updates to reactions of reactive nitrogen species, resulting in a 7% net increase in the stratospheric NO<sub><i>x</i></sub> (NO + NO<sub>2</sub>) burden; an updated CO + OH rate formula leading to a 2.7% reduction in total tropospheric CO; adjustments to the rate coefficient and branching ratios of propane + OH, leading to reduced tropospheric propane (-17%) and increased acetone (+3.5%) burdens; a 41% increase in the tropospheric burden of peroxyacetic acid due to a decrease in the rate coefficient for its reaction with OH, further contributing to reductions in peroxyacetyl nitrate (PAN; -3.8%) and acetic acid (-3.4%); and a number of minor adjustments to halogen radical cycling. Changes to the global tropospheric burdens of other species include -0.7% for ozone, +0.3% for OH (-0.4% for methane lifetime against oxidation by tropospheric OH), +0.8% for formaldehyde, and -1.7% for NO<sub><i>x</i></sub>. The updated mechanism reflects the current state of the science, including complex chemical dependencies of key atmospheric species on temperature, pressure, and concentrations of other compounds. The improved conservation of carbon and nitrogen will facilitate future studies of their overall atmospheric budgets.</p>\",\"PeriodicalId\":12799,\"journal\":{\"name\":\"Geoscientific Model Development\",\"volume\":\"7 4\",\"pages\":\"1511-1524\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Model Development\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gmd-17-1511-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-17-1511-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry.
We updated the chemical mechanism of the GEOS-Chem global 3-D model of atmospheric chemistry to include new recommendations from the NASA Jet Propulsion Laboratory (JPL) chemical kinetics Data Evaluation 19-5 and from the International Union of Pure and Applied Chemistry (IUPAC) and to balance carbon and nitrogen. We examined the impact of these updates on the GEOS-Chem version 14.0.1 simulation. Notable changes include 11 updates to reactions of reactive nitrogen species, resulting in a 7% net increase in the stratospheric NOx (NO + NO2) burden; an updated CO + OH rate formula leading to a 2.7% reduction in total tropospheric CO; adjustments to the rate coefficient and branching ratios of propane + OH, leading to reduced tropospheric propane (-17%) and increased acetone (+3.5%) burdens; a 41% increase in the tropospheric burden of peroxyacetic acid due to a decrease in the rate coefficient for its reaction with OH, further contributing to reductions in peroxyacetyl nitrate (PAN; -3.8%) and acetic acid (-3.4%); and a number of minor adjustments to halogen radical cycling. Changes to the global tropospheric burdens of other species include -0.7% for ozone, +0.3% for OH (-0.4% for methane lifetime against oxidation by tropospheric OH), +0.8% for formaldehyde, and -1.7% for NOx. The updated mechanism reflects the current state of the science, including complex chemical dependencies of key atmospheric species on temperature, pressure, and concentrations of other compounds. The improved conservation of carbon and nitrogen will facilitate future studies of their overall atmospheric budgets.
期刊介绍:
Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:
* geoscientific model descriptions, from statistical models to box models to GCMs;
* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
* model experiment descriptions, including experimental details and project protocols;
* full evaluations of previously published models.