Akotchiffor Kevin Geoffroy Djotan, Norihisa Matsushita, Kenji Fukuda
{"title":"日本隐花植物根部和周围土壤中节肢型菌根真菌群落的全年动态。","authors":"Akotchiffor Kevin Geoffroy Djotan, Norihisa Matsushita, Kenji Fukuda","doi":"10.1007/s00572-024-01143-x","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) live simultaneously inside and outside of host plant roots for a functional mycorrhizal symbiosis. Still, the year-round dynamics and relationships between soil properties and AMF communities of trees in forest ecosystems remain unclear. We collected paired root and soil samples of the same Cryptomeria japonica trees at two forest sites (five trees at each site) every 2 months over a year. Total DNA was extracted from roots and soil separately and soil physicochemical properties were measured. With Illumina's next-generation amplicon sequencing targeting the small subunit of fungal ribosomal DNA, we clarified seasonal dynamics of soil properties and AMF communities. Soil pH and total phosphorus showed significant seasonality while total carbon, nitrogen, and C/N did not. Only pH was a good predictor of the composition and dynamics of the AMF community. The total AMF community (roots + soil) showed significant seasonality because of variation from May to September. Root and soil AMF communities were steady year-round, however, with similar species richness but contained significantly different AMF assemblages in any sampling month. Despite the weak seasonality in the communities, the top two dominant OTUs showed significant but different shifts between roots and soils across seasons with strong antagonistic relationships. In conclusion, few dominant AMF taxa are dynamically shifting between the roots and soils of C. japonica to respond to seasonal and phenological variations in their microhabitats. AMF inhabiting forest ecosystems may have high environmental plasticity to sustain a functional symbiosis regardless of seasonal variations that occur in the soil.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"119-130"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998819/pdf/","citationCount":"0","resultStr":"{\"title\":\"Year-round dynamics of arbuscular mycorrhizal fungi communities in the roots and surrounding soils of Cryptomeria japonica.\",\"authors\":\"Akotchiffor Kevin Geoffroy Djotan, Norihisa Matsushita, Kenji Fukuda\",\"doi\":\"10.1007/s00572-024-01143-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arbuscular mycorrhizal fungi (AMF) live simultaneously inside and outside of host plant roots for a functional mycorrhizal symbiosis. Still, the year-round dynamics and relationships between soil properties and AMF communities of trees in forest ecosystems remain unclear. We collected paired root and soil samples of the same Cryptomeria japonica trees at two forest sites (five trees at each site) every 2 months over a year. Total DNA was extracted from roots and soil separately and soil physicochemical properties were measured. With Illumina's next-generation amplicon sequencing targeting the small subunit of fungal ribosomal DNA, we clarified seasonal dynamics of soil properties and AMF communities. Soil pH and total phosphorus showed significant seasonality while total carbon, nitrogen, and C/N did not. Only pH was a good predictor of the composition and dynamics of the AMF community. The total AMF community (roots + soil) showed significant seasonality because of variation from May to September. Root and soil AMF communities were steady year-round, however, with similar species richness but contained significantly different AMF assemblages in any sampling month. Despite the weak seasonality in the communities, the top two dominant OTUs showed significant but different shifts between roots and soils across seasons with strong antagonistic relationships. In conclusion, few dominant AMF taxa are dynamically shifting between the roots and soils of C. japonica to respond to seasonal and phenological variations in their microhabitats. AMF inhabiting forest ecosystems may have high environmental plasticity to sustain a functional symbiosis regardless of seasonal variations that occur in the soil.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\" \",\"pages\":\"119-130\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998819/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01143-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01143-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Year-round dynamics of arbuscular mycorrhizal fungi communities in the roots and surrounding soils of Cryptomeria japonica.
Arbuscular mycorrhizal fungi (AMF) live simultaneously inside and outside of host plant roots for a functional mycorrhizal symbiosis. Still, the year-round dynamics and relationships between soil properties and AMF communities of trees in forest ecosystems remain unclear. We collected paired root and soil samples of the same Cryptomeria japonica trees at two forest sites (five trees at each site) every 2 months over a year. Total DNA was extracted from roots and soil separately and soil physicochemical properties were measured. With Illumina's next-generation amplicon sequencing targeting the small subunit of fungal ribosomal DNA, we clarified seasonal dynamics of soil properties and AMF communities. Soil pH and total phosphorus showed significant seasonality while total carbon, nitrogen, and C/N did not. Only pH was a good predictor of the composition and dynamics of the AMF community. The total AMF community (roots + soil) showed significant seasonality because of variation from May to September. Root and soil AMF communities were steady year-round, however, with similar species richness but contained significantly different AMF assemblages in any sampling month. Despite the weak seasonality in the communities, the top two dominant OTUs showed significant but different shifts between roots and soils across seasons with strong antagonistic relationships. In conclusion, few dominant AMF taxa are dynamically shifting between the roots and soils of C. japonica to respond to seasonal and phenological variations in their microhabitats. AMF inhabiting forest ecosystems may have high environmental plasticity to sustain a functional symbiosis regardless of seasonal variations that occur in the soil.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.