DateLife:利用数据库和分析工具揭示年代久远的生命之树。

IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Systematic Biology Pub Date : 2024-07-27 DOI:10.1093/sysbio/syae015
Luna L Sánchez Reyes, Emily Jane McTavish, Brian O'Meara
{"title":"DateLife:利用数据库和分析工具揭示年代久远的生命之树。","authors":"Luna L Sánchez Reyes, Emily Jane McTavish, Brian O'Meara","doi":"10.1093/sysbio/syae015","DOIUrl":null,"url":null,"abstract":"<p><p>Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"470-485"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282365/pdf/","citationCount":"0","resultStr":"{\"title\":\"DateLife: Leveraging Databases and Analytical Tools to Reveal the Dated Tree of Life.\",\"authors\":\"Luna L Sánchez Reyes, Emily Jane McTavish, Brian O'Meara\",\"doi\":\"10.1093/sysbio/syae015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\" \",\"pages\":\"470-485\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282365/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syae015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

年表--分支长度与时间成正比的系统发生图--是生物研究许多领域中研究自然过程的进化事件发生时间的关键数据。年表还提供了宝贵的信息,可用于教育、科学交流和保护政策决策。然而,实现高质量的年表重建是一项困难且耗费资源的任务。DateLife 是一个系统发育软件,以 R 软件包和 R Shiny 网络应用程序的形式实现,可在 www .datelife.org 网站上下载。DateLife 可为高效、轻松地发现、汇总、重用和重新分析节点年龄数据提供服务,这些节点年龄数据是从专家、同行评审和公开的年表数据库中挖掘出来的。DateLife 的主要工作流程始于用户提供的一个或多个科学类群名称。名称经过处理并标准化为统一的分类标准后,DateLife 就可以在其本地年表数据库中进行名称匹配,该数据库由开放生命树的系统发育资料库整理而成,并提取所有包含至少两个被查询分类群名称的年表及其元数据。最后,使用一致性算法将匹配年表中的节点年龄映射到树状拓扑上的相应节点上,树状拓扑可以从开放生命树的合成系统发生库中提取,也可以由用户提供。同化后的节点年龄将作为辅助校准,使用不同的系统发育年代测定方法(如 BLADJ、treePL、PATHd8 和 MrBayes)对所选拓扑进行年代测定,无论是否有初始分支长度。我们进行了交叉验证测试,将 DateLife 分析得出的节点年龄(即使用二级定标进行系统发育定年)与原始年代图得出的节点年龄(即使用一级定标得出的节点年龄)进行比较,结果发现 DateLife 的节点年龄估计值与原始年代图的年龄估计值一致,最大的年龄差异出现在拓扑较深的节点周围。由于任何科学分析软件的结果只能与作为输入的数据一样好,我们强调了在考虑 DateLife 分析结果时输入年表的重要性。DateLife 可以帮助人们更好地认识到同一多样化事件的其他日期假说之间存在的差异,并支持探索其他年表假说对下游分析的影响,为更明智地解释进化结果提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DateLife: Leveraging Databases and Analytical Tools to Reveal the Dated Tree of Life.

Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
期刊最新文献
A Double-edged Sword: Evolutionary Novelty along Deep-time Diversity Oscillation in An Iconic Group of Predatory Insects (Neuroptera: Mantispoidea) Are Modern Cryptic Species Detectable in the Fossil Record? A Case Study on Agamid Lizards. Bayesian Selection of Relaxed-clock Models: Distinguishing Between Independent and Autocorrelated Rates. Testing relationships between multiple regional features and biogeographic processes of speciation, extinction, and dispersal Robustness of Divergence Time Estimation Despite Gene Tree Estimation Error: A Case Study of Fireflies (Coleoptera: Lampyridae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1