利用外源转录因子将细胞重编程为 iPSCs 的分子基础。

Q4 Biochemistry, Genetics and Molecular Biology Results and Problems in Cell Differentiation Pub Date : 2024-01-01 DOI:10.1007/978-3-031-39027-2_11
Hisato Kondoh
{"title":"利用外源转录因子将细胞重编程为 iPSCs 的分子基础。","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_11","DOIUrl":null,"url":null,"abstract":"<p><p>A striking discovery in recent decades concerning the transcription factor (TF)-dependent process was the production of induced pluripotent stem cell (iPSCs) from fibroblasts by the exogenous expression of the TF cocktail containing Oct3/4 (Pou5f1), Sox2, Klf4, and Myc, collectively called OSKM. How fibroblast cells can be remodeled into embryonic stem cell (ESC)-like iPSCs despite high epigenetic barriers has opened a new essential avenue to understanding the action of TFs in developmental regulation. Two forerunning investigations preceded the iPSC phenomenon: exogenous TF-mediated cell remodeling driven by the action of MyoD, and the \"pioneer TF\" action to preopen chromatin, allowing multiple TFs to access enhancer sequences. The process of remodeling somatic cells into iPSCs has been broken down into multiple subprocesses: the initial attack of OSKM on closed chromatin, sequential changes in cytosine modification, enhancer usage, and gene silencing and activation. Notably, the OSKM TFs change their genomic binding sites extensively. The analyses are still at the descriptive stage, but currently available information is discussed in this chapter.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Basis of Cell Reprogramming into iPSCs with Exogenous Transcription Factors.\",\"authors\":\"Hisato Kondoh\",\"doi\":\"10.1007/978-3-031-39027-2_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A striking discovery in recent decades concerning the transcription factor (TF)-dependent process was the production of induced pluripotent stem cell (iPSCs) from fibroblasts by the exogenous expression of the TF cocktail containing Oct3/4 (Pou5f1), Sox2, Klf4, and Myc, collectively called OSKM. How fibroblast cells can be remodeled into embryonic stem cell (ESC)-like iPSCs despite high epigenetic barriers has opened a new essential avenue to understanding the action of TFs in developmental regulation. Two forerunning investigations preceded the iPSC phenomenon: exogenous TF-mediated cell remodeling driven by the action of MyoD, and the \\\"pioneer TF\\\" action to preopen chromatin, allowing multiple TFs to access enhancer sequences. The process of remodeling somatic cells into iPSCs has been broken down into multiple subprocesses: the initial attack of OSKM on closed chromatin, sequential changes in cytosine modification, enhancer usage, and gene silencing and activation. Notably, the OSKM TFs change their genomic binding sites extensively. The analyses are still at the descriptive stage, but currently available information is discussed in this chapter.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-39027-2_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-39027-2_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,关于转录因子(TF)依赖过程的一个惊人发现是,通过外源表达包含Oct3/4(Pou5f1)、Sox2、Klf4和Myc(统称OSKM)的TF鸡尾酒,从成纤维细胞中产生了诱导多能干细胞(iPSC)。成纤维细胞如何在表观遗传学障碍较高的情况下重塑为类似胚胎干细胞(ESC)的iPSC,为了解TF在发育调控中的作用开辟了一条新的重要途径。在 iPSC 现象之前有两项先驱研究:由 MyoD 作用驱动的外源 TF 介导的细胞重塑,以及预开放染色质的 "先驱 TF "作用,允许多种 TF 进入增强子序列。体细胞重塑为 iPSCs 的过程被分解为多个子过程:OSKM 对封闭染色质的初始攻击、胞嘧啶修饰的连续变化、增强子的使用以及基因沉默和激活。值得注意的是,OSKM TFs 会广泛改变其基因组结合位点。这些分析仍处于描述阶段,但本章将讨论目前可用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Basis of Cell Reprogramming into iPSCs with Exogenous Transcription Factors.

A striking discovery in recent decades concerning the transcription factor (TF)-dependent process was the production of induced pluripotent stem cell (iPSCs) from fibroblasts by the exogenous expression of the TF cocktail containing Oct3/4 (Pou5f1), Sox2, Klf4, and Myc, collectively called OSKM. How fibroblast cells can be remodeled into embryonic stem cell (ESC)-like iPSCs despite high epigenetic barriers has opened a new essential avenue to understanding the action of TFs in developmental regulation. Two forerunning investigations preceded the iPSC phenomenon: exogenous TF-mediated cell remodeling driven by the action of MyoD, and the "pioneer TF" action to preopen chromatin, allowing multiple TFs to access enhancer sequences. The process of remodeling somatic cells into iPSCs has been broken down into multiple subprocesses: the initial attack of OSKM on closed chromatin, sequential changes in cytosine modification, enhancer usage, and gene silencing and activation. Notably, the OSKM TFs change their genomic binding sites extensively. The analyses are still at the descriptive stage, but currently available information is discussed in this chapter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
期刊最新文献
Early Syncytialization of the Ovine Placenta Revisited. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Osteoclasts at Bone Remodeling: Order from Order.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1