综合多基因风险评分提高了复杂性状和疾病的预测准确性。

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-04-10 Epub Date: 2024-03-19 DOI:10.1016/j.xgen.2024.100523
Buu Truong, Leland E Hull, Yunfeng Ruan, Qin Qin Huang, Whitney Hornsby, Hilary Martin, David A van Heel, Ying Wang, Alicia R Martin, S Hong Lee, Pradeep Natarajan
{"title":"综合多基因风险评分提高了复杂性状和疾病的预测准确性。","authors":"Buu Truong, Leland E Hull, Yunfeng Ruan, Qin Qin Huang, Whitney Hornsby, Hilary Martin, David A van Heel, Ying Wang, Alicia R Martin, S Hong Lee, Pradeep Natarajan","doi":"10.1016/j.xgen.2024.100523","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10<sup>-5</sup>) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10<sup>-6</sup>), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10<sup>-6</sup>) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10<sup>-7</sup>) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10<sup>-4</sup>). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100523"},"PeriodicalIF":11.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases.\",\"authors\":\"Buu Truong, Leland E Hull, Yunfeng Ruan, Qin Qin Huang, Whitney Hornsby, Hilary Martin, David A van Heel, Ying Wang, Alicia R Martin, S Hong Lee, Pradeep Natarajan\",\"doi\":\"10.1016/j.xgen.2024.100523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10<sup>-5</sup>) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10<sup>-6</sup>), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10<sup>-6</sup>) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10<sup>-7</sup>) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10<sup>-4</sup>). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100523\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多基因风险评分(PRS)是预测个体临床表型和结果的新兴工具。我们提出了 PRSmix 和 PRSmix+,前者是一个利用目标性状的 PRS 语料库来提高预测准确性的框架,后者则纳入了遗传相关性状,以更好地捕捉欧洲和南亚血统中分别为 47 种和 32 种疾病/性状的人类遗传结构。PRSmix 的平均预测准确率提高了 1.20 倍(95% 置信区间 [CI],[1.10; 1.3];p = 9.17 × 10-5)和 1.19 倍(95% 置信区间 [CI],[1.11; 1.27];p = 1.92 × 10-6),PRSmix+则将欧洲血统和南亚血统的预测准确率分别提高了 1.72 倍(95% CI,[1.40; 2.04];p = 7.58 × 10-6)和 1.42 倍(95% CI,[1.25; 1.59];p = 8.01 × 10-7)。与之前使用预先定义的相关性状得分的交叉性状组合方法相比,我们的方法提高了冠心病的预测准确率达 3.27 倍(95% CI,[2.1; 4.44];经错误发现率 (FDR) 校正后的 p 值 = 2.6 × 10-4)。我们的方法提供了一个全面的框架,可对 PRS 的综合能力进行基准测试和利用,从而在所需的目标人群中实现最高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases.

Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10-5) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10-6) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10-7) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10-4). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1