{"title":"用结构域交换策略创建模块化转录调节器,实现基因网络中的新拓扑结构","authors":"Clement T.Y. Chan , Vincenzo Kennedy , Sahaj Kinshuk","doi":"10.1016/j.biotechadv.2024.108345","DOIUrl":null,"url":null,"abstract":"<div><p>Transcriptional regulators generate connections between biological signals and genetic outputs. They are used robustly for sensing input signals in building genetic circuits. However, each regulator can only generate a fixed connection, which generates constraints in linking multiple signals for more complex processes. Recent studies discovered that a domain swapping strategy can be applied to various regulator families to create modular regulators for new signal-output connections, significantly broadening possibilities in circuit design. Here we review the development of this emerging strategy, the use of resulting modular regulators for creating novel genetic response behaviors, and current limitations and solutions for further advancing the design of modular regulators.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"72 ","pages":"Article 108345"},"PeriodicalIF":12.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A domain swapping strategy to create modular transcriptional regulators for novel topology in genetic network\",\"authors\":\"Clement T.Y. Chan , Vincenzo Kennedy , Sahaj Kinshuk\",\"doi\":\"10.1016/j.biotechadv.2024.108345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcriptional regulators generate connections between biological signals and genetic outputs. They are used robustly for sensing input signals in building genetic circuits. However, each regulator can only generate a fixed connection, which generates constraints in linking multiple signals for more complex processes. Recent studies discovered that a domain swapping strategy can be applied to various regulator families to create modular regulators for new signal-output connections, significantly broadening possibilities in circuit design. Here we review the development of this emerging strategy, the use of resulting modular regulators for creating novel genetic response behaviors, and current limitations and solutions for further advancing the design of modular regulators.</p></div>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\"72 \",\"pages\":\"Article 108345\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734975024000399\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024000399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A domain swapping strategy to create modular transcriptional regulators for novel topology in genetic network
Transcriptional regulators generate connections between biological signals and genetic outputs. They are used robustly for sensing input signals in building genetic circuits. However, each regulator can only generate a fixed connection, which generates constraints in linking multiple signals for more complex processes. Recent studies discovered that a domain swapping strategy can be applied to various regulator families to create modular regulators for new signal-output connections, significantly broadening possibilities in circuit design. Here we review the development of this emerging strategy, the use of resulting modular regulators for creating novel genetic response behaviors, and current limitations and solutions for further advancing the design of modular regulators.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.