豚草提取物对红火蚁的影响:破坏营养周膜的完整性,改变肠道微生物的多样性、组成和功能

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-03-19 DOI:10.1007/s10340-024-01769-y
Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang
{"title":"豚草提取物对红火蚁的影响:破坏营养周膜的完整性,改变肠道微生物的多样性、组成和功能","authors":"Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang","doi":"10.1007/s10340-024-01769-y","DOIUrl":null,"url":null,"abstract":"<p><i>Gelsemium elegans</i> Benth. (<i>Loganiaceae</i>), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to <i>G. elegans</i> extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of <i>G. elegans</i> extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, <i>G. elegans</i> extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of <i>G. elegans</i> extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of <i>G. elegans</i> and supported the development of eco-friendly insecticides for red fire ants.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"70 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function\",\"authors\":\"Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang\",\"doi\":\"10.1007/s10340-024-01769-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Gelsemium elegans</i> Benth. (<i>Loganiaceae</i>), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to <i>G. elegans</i> extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of <i>G. elegans</i> extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, <i>G. elegans</i> extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of <i>G. elegans</i> extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of <i>G. elegans</i> and supported the development of eco-friendly insecticides for red fire ants.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01769-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01769-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Gelsemium elegans Benth.(又名伤心草,可用于制造草药。研究还发现其具有杀虫活性,可用于开发植物杀虫剂。本研究旨在揭示其提取物对红火蚁的杀虫机制,为开发生物农药和促进绿色可持续农业提供策略。研究人员通过 16s rRNA、病理组织学、行为学和酶活性测定来揭示其生物效应,包括对非靶标生物的影响。我们的研究结果表明,红火蚁暴露于 G. elegans 提取物后,生长速度减慢,摄食量减少,攻击性降低。红火蚁的中肠及其营养周膜受到明显破坏,肠道微生物群落的多样性降低,微生物组成的平衡被打破。异种生物降解和代谢途径的功能丰度以及P450s酶活性的显著增加证实了优雅蚁提取物的毒性胁迫作用。京都基因和基因组百科全书》通路功能预测显示,新生物素生物合成、类黄酮生物合成、溶酶体、蛋白酶体和无翼/整合信号通路的功能丰度在肠道中受到显著抑制。此外,草履虫提取物还能诱导乙酰胆碱酯酶活性的增加。这些结果揭示了红火蚁免疫系统和新陈代谢功能的失调,以及草履虫提取物对生理功能和神经的毒性作用。这些研究结果揭示了草履虫的杀虫机制,有助于开发针对红火蚁的环保型杀虫剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function

Gelsemium elegans Benth. (Loganiaceae), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to G. elegans extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of G. elegans extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, G. elegans extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of G. elegans extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of G. elegans and supported the development of eco-friendly insecticides for red fire ants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1