角膜塑形镜:探索基本原理和未来展望--全面系统综述。

IF 2.3 Q2 OPHTHALMOLOGY Therapeutic Advances in Ophthalmology Pub Date : 2024-03-20 eCollection Date: 2024-01-01 DOI:10.1177/25158414241232258
Sana Niazi, Zisis Gatzioufas, Farideh Doroodgar, Oliver Findl, Alireza Baradaran-Rafii, Jacob Liechty, Majid Moshirfar
{"title":"角膜塑形镜:探索基本原理和未来展望--全面系统综述。","authors":"Sana Niazi, Zisis Gatzioufas, Farideh Doroodgar, Oliver Findl, Alireza Baradaran-Rafii, Jacob Liechty, Majid Moshirfar","doi":"10.1177/25158414241232258","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>New developments in artificial intelligence, particularly with promising results in early detection and management of keratoconus, have favorably altered the natural history of the disease over the last few decades. Features of artificial intelligence in different machine such as anterior segment optical coherence tomography, and femtosecond laser technique have improved safety, precision, effectiveness, and predictability of treatment modalities of keratoconus (from contact lenses to keratoplasty techniques). These options ingrained in artificial intelligence are already underway and allow ophthalmologist to approach disease in the most non-invasive way.</p><p><strong>Objectives: </strong>This study comprehensively describes all of the treatment modalities of keratoconus considering machine learning strategies.</p><p><strong>Design: </strong>A multidimensional comprehensive systematic narrative review.</p><p><strong>Data sources and methods: </strong>A comprehensive search was done in the five main electronic databases (PubMed, Scopus, Web of Science, Embase, and Cochrane), without language and time or type of study restrictions. Afterward, eligible articles were selected by screening the titles and abstracts based on main mesh keywords. For potentially eligible articles, the full text was also reviewed.</p><p><strong>Results: </strong>Artificial intelligence demonstrates promise in keratoconus diagnosis and clinical management, spanning early detection (especially in subclinical cases), preoperative screening, postoperative ectasia prediction after keratorefractive surgery, and guiding surgical decisions. The majority of studies employed a solitary machine learning algorithm, whereas minor studies assessed multiple algorithms that evaluated the association of various keratoconus staging and management strategies. Last but not least, AI has proven effective in guiding the implantation of intracorneal ring segments in keratoconus corneas and predicting surgical outcomes.</p><p><strong>Conclusion: </strong>The efficient and widespread clinical translation of machine learning models in keratoconus management is a crucial goal of potential future approaches to better visual performance in keratoconus patients.</p><p><strong>Trial registration: </strong>The article has been registered through PROSPERO, an international database of prospectively registered systematic reviews, with the ID: CRD42022319338.</p>","PeriodicalId":23054,"journal":{"name":"Therapeutic Advances in Ophthalmology","volume":"16 ","pages":"25158414241232258"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956165/pdf/","citationCount":"0","resultStr":"{\"title\":\"Keratoconus: exploring fundamentals and future perspectives - a comprehensive systematic review.\",\"authors\":\"Sana Niazi, Zisis Gatzioufas, Farideh Doroodgar, Oliver Findl, Alireza Baradaran-Rafii, Jacob Liechty, Majid Moshirfar\",\"doi\":\"10.1177/25158414241232258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>New developments in artificial intelligence, particularly with promising results in early detection and management of keratoconus, have favorably altered the natural history of the disease over the last few decades. Features of artificial intelligence in different machine such as anterior segment optical coherence tomography, and femtosecond laser technique have improved safety, precision, effectiveness, and predictability of treatment modalities of keratoconus (from contact lenses to keratoplasty techniques). These options ingrained in artificial intelligence are already underway and allow ophthalmologist to approach disease in the most non-invasive way.</p><p><strong>Objectives: </strong>This study comprehensively describes all of the treatment modalities of keratoconus considering machine learning strategies.</p><p><strong>Design: </strong>A multidimensional comprehensive systematic narrative review.</p><p><strong>Data sources and methods: </strong>A comprehensive search was done in the five main electronic databases (PubMed, Scopus, Web of Science, Embase, and Cochrane), without language and time or type of study restrictions. Afterward, eligible articles were selected by screening the titles and abstracts based on main mesh keywords. For potentially eligible articles, the full text was also reviewed.</p><p><strong>Results: </strong>Artificial intelligence demonstrates promise in keratoconus diagnosis and clinical management, spanning early detection (especially in subclinical cases), preoperative screening, postoperative ectasia prediction after keratorefractive surgery, and guiding surgical decisions. The majority of studies employed a solitary machine learning algorithm, whereas minor studies assessed multiple algorithms that evaluated the association of various keratoconus staging and management strategies. Last but not least, AI has proven effective in guiding the implantation of intracorneal ring segments in keratoconus corneas and predicting surgical outcomes.</p><p><strong>Conclusion: </strong>The efficient and widespread clinical translation of machine learning models in keratoconus management is a crucial goal of potential future approaches to better visual performance in keratoconus patients.</p><p><strong>Trial registration: </strong>The article has been registered through PROSPERO, an international database of prospectively registered systematic reviews, with the ID: CRD42022319338.</p>\",\"PeriodicalId\":23054,\"journal\":{\"name\":\"Therapeutic Advances in Ophthalmology\",\"volume\":\"16 \",\"pages\":\"25158414241232258\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic Advances in Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25158414241232258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25158414241232258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:人工智能的新发展,尤其是在角膜病的早期检测和管理方面取得的可喜成果,在过去几十年中已有利地改变了角膜病的自然病史。人工智能在不同机器(如前节光学相干断层扫描和飞秒激光技术)中的应用提高了角膜病治疗方法(从隐形眼镜到角膜成形技术)的安全性、精确性、有效性和可预测性。这些植入人工智能的方案已经开始实施,眼科医生可以用最无创的方式治疗疾病:本研究全面描述了考虑机器学习策略的所有角膜病治疗方法:设计:多维度综合系统性综述:在五大电子数据库(PubMed、Scopus、Web of Science、Embase 和 Cochrane)中进行了全面检索,无语言、时间或研究类型限制。然后,根据主要网状关键词筛选标题和摘要,选出符合条件的文章。对于可能符合条件的文章,还对全文进行了审查:人工智能在角膜病诊断和临床管理方面大有可为,包括早期检测(尤其是亚临床病例)、术前筛查、角膜屈光手术后异位预测以及指导手术决策。大多数研究采用了一种单独的机器学习算法,而少数研究则评估了多种算法,这些算法评估了各种角膜病分期和管理策略之间的关联。最后但并非最不重要的一点是,人工智能在指导角膜内环节段植入角膜和预测手术结果方面被证明是有效的:机器学习模型在角膜病管理中的高效和广泛的临床应用,是未来改善角膜病患者视觉表现的潜在方法的重要目标:该文章已在PROSPERO(前瞻性注册系统综述的国际数据库)注册,ID为CRD42022319338。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Keratoconus: exploring fundamentals and future perspectives - a comprehensive systematic review.

Background: New developments in artificial intelligence, particularly with promising results in early detection and management of keratoconus, have favorably altered the natural history of the disease over the last few decades. Features of artificial intelligence in different machine such as anterior segment optical coherence tomography, and femtosecond laser technique have improved safety, precision, effectiveness, and predictability of treatment modalities of keratoconus (from contact lenses to keratoplasty techniques). These options ingrained in artificial intelligence are already underway and allow ophthalmologist to approach disease in the most non-invasive way.

Objectives: This study comprehensively describes all of the treatment modalities of keratoconus considering machine learning strategies.

Design: A multidimensional comprehensive systematic narrative review.

Data sources and methods: A comprehensive search was done in the five main electronic databases (PubMed, Scopus, Web of Science, Embase, and Cochrane), without language and time or type of study restrictions. Afterward, eligible articles were selected by screening the titles and abstracts based on main mesh keywords. For potentially eligible articles, the full text was also reviewed.

Results: Artificial intelligence demonstrates promise in keratoconus diagnosis and clinical management, spanning early detection (especially in subclinical cases), preoperative screening, postoperative ectasia prediction after keratorefractive surgery, and guiding surgical decisions. The majority of studies employed a solitary machine learning algorithm, whereas minor studies assessed multiple algorithms that evaluated the association of various keratoconus staging and management strategies. Last but not least, AI has proven effective in guiding the implantation of intracorneal ring segments in keratoconus corneas and predicting surgical outcomes.

Conclusion: The efficient and widespread clinical translation of machine learning models in keratoconus management is a crucial goal of potential future approaches to better visual performance in keratoconus patients.

Trial registration: The article has been registered through PROSPERO, an international database of prospectively registered systematic reviews, with the ID: CRD42022319338.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
44
审稿时长
12 weeks
期刊最新文献
The efficacy and safety of continuous blanket suture for severe recurrent pterygium with symblepharon. The experiences of visually impaired military veterans with Charles Bonnet syndrome. Are depression, anxiety and loneliness associated with visual hallucinations in younger adults with Charles Bonnet syndrome? Clinical characteristics of allergic conjunctivitis in the Southern region of Saudi Arabia: a cross-sectional study. Optical coherence tomography angiography to assess for retinal vascular changes in Neuro-Sjögren.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1