{"title":"利用 OCTAVIUS 4D 模型测量视丘和腮腺器官的剂量:鼻咽癌治疗的动态 IMRT 方法","authors":"Laya Karimkhani , Elham Saeedzadeh , Dariush Sardari , Seied Rabi Mahdavi","doi":"10.1016/j.imu.2024.101479","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>In intensity-modulated radiation therapy (IMRT) techniques, although the dose conformity increases, the out-of-field doses would not decrease. This study aimed to assess the dose error calculated by the treatment planning system (TPS) in the out-of-field regions using the dynamic IMRT (D-IMRT) method in nasopharyngeal cancer (NPC) patients.</p></div><div><h3>Methods</h3><p>The out-of-field doses were measured for the chiasm and parotid organs using the D-IMRT technique (6 MV energy) with Monaco TPS. Computed tomography (CT) images of 10 NPC patients (54–77 years, mean: 61.6 ± 12.2 years) were considered and countered using 7-field and 11-field methods. The OCTAVIUS 4D phantom was utilized for dose assessment.</p></div><div><h3>Results</h3><p>According to the OCTAVIUS measurements, the Monaco TPS dose errors ranged from −58.8 to 105.5%. The average dose error for optic chiasm and parotid organs was −25% and 8.5%, respectively, with several cases falling within tolerance (±5%).</p></div><div><h3>Conclusion</h3><p>There were considerable dose calculation errors by Monaco TPS for organs located in out-of-field regions (optic chiasm and parotid) during IMRT for NPC patients. Therefore, accurate dose estimation in the out-of-field regions should be considered in clinical practices.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"46 ","pages":"Article 101479"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000352/pdfft?md5=b9aec1cd6136252ad6eb04c8bd722b45&pid=1-s2.0-S2352914824000352-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dose measurement of optic chiasm and parotid organs using OCTAVIUS 4D phantom: a dynamic IMRT method for nasopharyngeal cancer treatment\",\"authors\":\"Laya Karimkhani , Elham Saeedzadeh , Dariush Sardari , Seied Rabi Mahdavi\",\"doi\":\"10.1016/j.imu.2024.101479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>In intensity-modulated radiation therapy (IMRT) techniques, although the dose conformity increases, the out-of-field doses would not decrease. This study aimed to assess the dose error calculated by the treatment planning system (TPS) in the out-of-field regions using the dynamic IMRT (D-IMRT) method in nasopharyngeal cancer (NPC) patients.</p></div><div><h3>Methods</h3><p>The out-of-field doses were measured for the chiasm and parotid organs using the D-IMRT technique (6 MV energy) with Monaco TPS. Computed tomography (CT) images of 10 NPC patients (54–77 years, mean: 61.6 ± 12.2 years) were considered and countered using 7-field and 11-field methods. The OCTAVIUS 4D phantom was utilized for dose assessment.</p></div><div><h3>Results</h3><p>According to the OCTAVIUS measurements, the Monaco TPS dose errors ranged from −58.8 to 105.5%. The average dose error for optic chiasm and parotid organs was −25% and 8.5%, respectively, with several cases falling within tolerance (±5%).</p></div><div><h3>Conclusion</h3><p>There were considerable dose calculation errors by Monaco TPS for organs located in out-of-field regions (optic chiasm and parotid) during IMRT for NPC patients. Therefore, accurate dose estimation in the out-of-field regions should be considered in clinical practices.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"46 \",\"pages\":\"Article 101479\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000352/pdfft?md5=b9aec1cd6136252ad6eb04c8bd722b45&pid=1-s2.0-S2352914824000352-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Dose measurement of optic chiasm and parotid organs using OCTAVIUS 4D phantom: a dynamic IMRT method for nasopharyngeal cancer treatment
Introduction
In intensity-modulated radiation therapy (IMRT) techniques, although the dose conformity increases, the out-of-field doses would not decrease. This study aimed to assess the dose error calculated by the treatment planning system (TPS) in the out-of-field regions using the dynamic IMRT (D-IMRT) method in nasopharyngeal cancer (NPC) patients.
Methods
The out-of-field doses were measured for the chiasm and parotid organs using the D-IMRT technique (6 MV energy) with Monaco TPS. Computed tomography (CT) images of 10 NPC patients (54–77 years, mean: 61.6 ± 12.2 years) were considered and countered using 7-field and 11-field methods. The OCTAVIUS 4D phantom was utilized for dose assessment.
Results
According to the OCTAVIUS measurements, the Monaco TPS dose errors ranged from −58.8 to 105.5%. The average dose error for optic chiasm and parotid organs was −25% and 8.5%, respectively, with several cases falling within tolerance (±5%).
Conclusion
There were considerable dose calculation errors by Monaco TPS for organs located in out-of-field regions (optic chiasm and parotid) during IMRT for NPC patients. Therefore, accurate dose estimation in the out-of-field regions should be considered in clinical practices.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.