{"title":"欧盟海洋观测系统溶解度预测挑战赛的概要和背景。","authors":"Wenyu Wang , Jing Tang , Andrea Zaliani","doi":"10.1016/j.slasd.2024.100155","DOIUrl":null,"url":null,"abstract":"<div><p>In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 4","pages":"Article 100155"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000170/pdfft?md5=31adf40156a4682f7a09408654d5d462&pid=1-s2.0-S2472555224000170-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Outline and background for the EU-OS solubility prediction challenge\",\"authors\":\"Wenyu Wang , Jing Tang , Andrea Zaliani\",\"doi\":\"10.1016/j.slasd.2024.100155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"29 4\",\"pages\":\"Article 100155\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555224000170/pdfft?md5=31adf40156a4682f7a09408654d5d462&pid=1-s2.0-S2472555224000170-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555224000170\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000170","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Outline and background for the EU-OS solubility prediction challenge
In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).