{"title":"欧盟海洋观测系统溶解度预测挑战赛的概要和背景。","authors":"Wenyu Wang , Jing Tang , Andrea Zaliani","doi":"10.1016/j.slasd.2024.100155","DOIUrl":null,"url":null,"abstract":"<div><p>In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000170/pdfft?md5=31adf40156a4682f7a09408654d5d462&pid=1-s2.0-S2472555224000170-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Outline and background for the EU-OS solubility prediction challenge\",\"authors\":\"Wenyu Wang , Jing Tang , Andrea Zaliani\",\"doi\":\"10.1016/j.slasd.2024.100155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555224000170/pdfft?md5=31adf40156a4682f7a09408654d5d462&pid=1-s2.0-S2472555224000170-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555224000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Outline and background for the EU-OS solubility prediction challenge
In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.