{"title":"通过子集选择获得低差异点集的启发式方法","authors":"François Clément , Carola Doerr , Luís Paquete","doi":"10.1016/j.jco.2024.101852","DOIUrl":null,"url":null,"abstract":"<div><p>Building upon the exact methods presented in our earlier work (2022) <span>[5]</span>, we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes <span><math><mn>30</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>240</mn></math></span>, we obtain point sets in dimension 6 with <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> star discrepancy up to 35% better than that of the first <em>n</em> points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) <span>[31]</span>, showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000293/pdfft?md5=026f36f25d20579c91a0fc64a95356e5&pid=1-s2.0-S0885064X24000293-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Heuristic approaches to obtain low-discrepancy point sets via subset selection\",\"authors\":\"François Clément , Carola Doerr , Luís Paquete\",\"doi\":\"10.1016/j.jco.2024.101852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Building upon the exact methods presented in our earlier work (2022) <span>[5]</span>, we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes <span><math><mn>30</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>240</mn></math></span>, we obtain point sets in dimension 6 with <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> star discrepancy up to 35% better than that of the first <em>n</em> points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) <span>[31]</span>, showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000293/pdfft?md5=026f36f25d20579c91a0fc64a95356e5&pid=1-s2.0-S0885064X24000293-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000293\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Heuristic approaches to obtain low-discrepancy point sets via subset selection
Building upon the exact methods presented in our earlier work (2022) [5], we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes , we obtain point sets in dimension 6 with star discrepancy up to 35% better than that of the first n points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) [31], showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.