Johannes Lohmöller , Jan Pennekamp , Roman Matzutt , Carolin Victoria Schneider , Eduard Vlad , Christian Trautwein , Klaus Wehrle
{"title":"对数据生态系统的安全、主权和信任提供可靠保证的需求尚未得到解决","authors":"Johannes Lohmöller , Jan Pennekamp , Roman Matzutt , Carolin Victoria Schneider , Eduard Vlad , Christian Trautwein , Klaus Wehrle","doi":"10.1016/j.datak.2024.102301","DOIUrl":null,"url":null,"abstract":"<div><p>Data ecosystems emerged as a new paradigm to facilitate the automated and massive exchange of data from heterogeneous information sources between different stakeholders. However, the corresponding benefits come with unforeseen risks as sensitive information is potentially exposed, questioning data ecosystem reliability. Consequently, data security is of utmost importance and, thus, a central requirement for successfully realizing data ecosystems. Academia has recognized this requirement, and current initiatives foster sovereign participation via a federated infrastructure where participants retain local control over what data they offer to whom. However, recent proposals place significant trust in remote infrastructure by implementing organizational security measures such as certification processes before the admission of a participant. At the same time, the data sensitivity incentivizes participants to bypass the organizational security measures to maximize their benefit. This issue significantly weakens security, sovereignty, and trust guarantees and highlights that organizational security measures are insufficient in this context. In this paper, we argue that data ecosystems must be extended with technical means to (re)establish dependable guarantees. We underpin this need with three representative use cases for data ecosystems, which cover personal, economic, and governmental data, and systematically map the lack of dependable guarantees in related work. To this end, we identify three enablers of dependable guarantees, namely trusted remote policy enforcement, verifiable data tracking, and integration of resource-constrained participants. These enablers are critical for securely implementing data ecosystems in data-sensitive contexts.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"151 ","pages":"Article 102301"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000259/pdfft?md5=5d1fb135737fcc7ddf73713a94b46ce0&pid=1-s2.0-S0169023X24000259-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The unresolved need for dependable guarantees on security, sovereignty, and trust in data ecosystems\",\"authors\":\"Johannes Lohmöller , Jan Pennekamp , Roman Matzutt , Carolin Victoria Schneider , Eduard Vlad , Christian Trautwein , Klaus Wehrle\",\"doi\":\"10.1016/j.datak.2024.102301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data ecosystems emerged as a new paradigm to facilitate the automated and massive exchange of data from heterogeneous information sources between different stakeholders. However, the corresponding benefits come with unforeseen risks as sensitive information is potentially exposed, questioning data ecosystem reliability. Consequently, data security is of utmost importance and, thus, a central requirement for successfully realizing data ecosystems. Academia has recognized this requirement, and current initiatives foster sovereign participation via a federated infrastructure where participants retain local control over what data they offer to whom. However, recent proposals place significant trust in remote infrastructure by implementing organizational security measures such as certification processes before the admission of a participant. At the same time, the data sensitivity incentivizes participants to bypass the organizational security measures to maximize their benefit. This issue significantly weakens security, sovereignty, and trust guarantees and highlights that organizational security measures are insufficient in this context. In this paper, we argue that data ecosystems must be extended with technical means to (re)establish dependable guarantees. We underpin this need with three representative use cases for data ecosystems, which cover personal, economic, and governmental data, and systematically map the lack of dependable guarantees in related work. To this end, we identify three enablers of dependable guarantees, namely trusted remote policy enforcement, verifiable data tracking, and integration of resource-constrained participants. These enablers are critical for securely implementing data ecosystems in data-sensitive contexts.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"151 \",\"pages\":\"Article 102301\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000259/pdfft?md5=5d1fb135737fcc7ddf73713a94b46ce0&pid=1-s2.0-S0169023X24000259-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000259\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000259","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The unresolved need for dependable guarantees on security, sovereignty, and trust in data ecosystems
Data ecosystems emerged as a new paradigm to facilitate the automated and massive exchange of data from heterogeneous information sources between different stakeholders. However, the corresponding benefits come with unforeseen risks as sensitive information is potentially exposed, questioning data ecosystem reliability. Consequently, data security is of utmost importance and, thus, a central requirement for successfully realizing data ecosystems. Academia has recognized this requirement, and current initiatives foster sovereign participation via a federated infrastructure where participants retain local control over what data they offer to whom. However, recent proposals place significant trust in remote infrastructure by implementing organizational security measures such as certification processes before the admission of a participant. At the same time, the data sensitivity incentivizes participants to bypass the organizational security measures to maximize their benefit. This issue significantly weakens security, sovereignty, and trust guarantees and highlights that organizational security measures are insufficient in this context. In this paper, we argue that data ecosystems must be extended with technical means to (re)establish dependable guarantees. We underpin this need with three representative use cases for data ecosystems, which cover personal, economic, and governmental data, and systematically map the lack of dependable guarantees in related work. To this end, we identify three enablers of dependable guarantees, namely trusted remote policy enforcement, verifiable data tracking, and integration of resource-constrained participants. These enablers are critical for securely implementing data ecosystems in data-sensitive contexts.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.