Anil R. Gupta, Monika Rank, Aneesha Singh, Saroj Sharma
{"title":"设计和制造用于水消毒的广谱抗菌多孔金属聚合物微球","authors":"Anil R. Gupta, Monika Rank, Aneesha Singh, Saroj Sharma","doi":"10.1002/mabi.202400004","DOIUrl":null,"url":null,"abstract":"<p>An expedient and efficient approach is used to synthesize a new class of metallo-polymeric microspheres (MPMs) as antimicrobials to succumb the wide range of bacteria from water. Three types of MPMs, that is, poly[Silver (I)-methacrylate-<i>co</i>-methylmethacrylate] (pAgMA), poly[Copper (II)-methacrylate-<i>co</i>-methyl methacrylate] (pCuMA), and poly[Nickel (II)-methacrylate-<i>co</i>-methylmethacrylate] (pNiMA), are prepared via radical suspension polymerization technique in 3D shape with porous texture. The structural and morphological characterization of the prepared microspheres are examined by analytical techniques. The antimicrobial potentialities of prepared MPMs are investigated at the laboratory scale study, revealing that the MPMs exhibit strong antibacterial activity (≈99.9% killing) against Gram-negative and Gram-positive bacteria [<i>Enterobacter hormaechei (EH)</i>, <i>Bacillus megatarium</i> <i>(BM)</i>, and <i>Bacillus bataviensis</i> (BB)]. The MacConkey agar medium test reveals that MPMs have substantial biocidal efficacy against broad-spectrum Gram-negative bacteria present in tap water. The MPMs exhibit significant antimicrobial efficacy via contact killing owe to the presence of integrated biocidal metal moiety, which represents that the MPMs are safe for water disinfection.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Fabrication of Broad-Spectrum Antimicrobial Porous Metallo-Polymeric Microsphere for Water Disinfection\",\"authors\":\"Anil R. Gupta, Monika Rank, Aneesha Singh, Saroj Sharma\",\"doi\":\"10.1002/mabi.202400004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An expedient and efficient approach is used to synthesize a new class of metallo-polymeric microspheres (MPMs) as antimicrobials to succumb the wide range of bacteria from water. Three types of MPMs, that is, poly[Silver (I)-methacrylate-<i>co</i>-methylmethacrylate] (pAgMA), poly[Copper (II)-methacrylate-<i>co</i>-methyl methacrylate] (pCuMA), and poly[Nickel (II)-methacrylate-<i>co</i>-methylmethacrylate] (pNiMA), are prepared via radical suspension polymerization technique in 3D shape with porous texture. The structural and morphological characterization of the prepared microspheres are examined by analytical techniques. The antimicrobial potentialities of prepared MPMs are investigated at the laboratory scale study, revealing that the MPMs exhibit strong antibacterial activity (≈99.9% killing) against Gram-negative and Gram-positive bacteria [<i>Enterobacter hormaechei (EH)</i>, <i>Bacillus megatarium</i> <i>(BM)</i>, and <i>Bacillus bataviensis</i> (BB)]. The MacConkey agar medium test reveals that MPMs have substantial biocidal efficacy against broad-spectrum Gram-negative bacteria present in tap water. The MPMs exhibit significant antimicrobial efficacy via contact killing owe to the presence of integrated biocidal metal moiety, which represents that the MPMs are safe for water disinfection.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design and Fabrication of Broad-Spectrum Antimicrobial Porous Metallo-Polymeric Microsphere for Water Disinfection
An expedient and efficient approach is used to synthesize a new class of metallo-polymeric microspheres (MPMs) as antimicrobials to succumb the wide range of bacteria from water. Three types of MPMs, that is, poly[Silver (I)-methacrylate-co-methylmethacrylate] (pAgMA), poly[Copper (II)-methacrylate-co-methyl methacrylate] (pCuMA), and poly[Nickel (II)-methacrylate-co-methylmethacrylate] (pNiMA), are prepared via radical suspension polymerization technique in 3D shape with porous texture. The structural and morphological characterization of the prepared microspheres are examined by analytical techniques. The antimicrobial potentialities of prepared MPMs are investigated at the laboratory scale study, revealing that the MPMs exhibit strong antibacterial activity (≈99.9% killing) against Gram-negative and Gram-positive bacteria [Enterobacter hormaechei (EH), Bacillus megatarium(BM), and Bacillus bataviensis (BB)]. The MacConkey agar medium test reveals that MPMs have substantial biocidal efficacy against broad-spectrum Gram-negative bacteria present in tap water. The MPMs exhibit significant antimicrobial efficacy via contact killing owe to the presence of integrated biocidal metal moiety, which represents that the MPMs are safe for water disinfection.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.