{"title":"不可压缩斯托克斯方程解耦方法中可局部计算的 P3 压力","authors":"Chunjae Park","doi":"10.1002/num.23101","DOIUrl":null,"url":null,"abstract":"This article will suggest a new finite element method to find a ‐velocity and a ‐pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a ‐velocity. Then, using the calculated velocity, a locally calculable ‐pressure will be defined component‐wisely. The resulting ‐pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the ‐velocity. Besides, the method overcomes the problem of singular vertices or corners.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A locally calculable P3‐pressure in a decoupled method for incompressible Stokes equations\",\"authors\":\"Chunjae Park\",\"doi\":\"10.1002/num.23101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article will suggest a new finite element method to find a ‐velocity and a ‐pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a ‐velocity. Then, using the calculated velocity, a locally calculable ‐pressure will be defined component‐wisely. The resulting ‐pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the ‐velocity. Besides, the method overcomes the problem of singular vertices or corners.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A locally calculable P3‐pressure in a decoupled method for incompressible Stokes equations
This article will suggest a new finite element method to find a ‐velocity and a ‐pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a ‐velocity. Then, using the calculated velocity, a locally calculable ‐pressure will be defined component‐wisely. The resulting ‐pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the ‐velocity. Besides, the method overcomes the problem of singular vertices or corners.