{"title":"根据铁和钛在高压和高温下的状态方程测定地核密度","authors":"A. B. Medvedev","doi":"10.1134/s0018151x23060044","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Using previously developed equations of state for iron and titanium, the density of the Earth’s core was calculated at a mass content of titanium in a mixture with iron of ~20%. This concentration is taken from data for high-titanium (HT) basalts, the formation of which in large igneous provinces is hypothetically associated with the ascent of thermal plumes in the mantle from the core to the surface. The calculated density on pressure dependences in the outer liquid and inner solid cores satisfactorily agree with the data of the preliminary reference Earth model (PREM).</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Density of the Earth’s Core Based on the Equations of State of Iron and Titanium at High Pressures and Temperatures\",\"authors\":\"A. B. Medvedev\",\"doi\":\"10.1134/s0018151x23060044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Using previously developed equations of state for iron and titanium, the density of the Earth’s core was calculated at a mass content of titanium in a mixture with iron of ~20%. This concentration is taken from data for high-titanium (HT) basalts, the formation of which in large igneous provinces is hypothetically associated with the ascent of thermal plumes in the mantle from the core to the surface. The calculated density on pressure dependences in the outer liquid and inner solid cores satisfactorily agree with the data of the preliminary reference Earth model (PREM).</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23060044\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23060044","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Determination of the Density of the Earth’s Core Based on the Equations of State of Iron and Titanium at High Pressures and Temperatures
Abstract
Using previously developed equations of state for iron and titanium, the density of the Earth’s core was calculated at a mass content of titanium in a mixture with iron of ~20%. This concentration is taken from data for high-titanium (HT) basalts, the formation of which in large igneous provinces is hypothetically associated with the ascent of thermal plumes in the mantle from the core to the surface. The calculated density on pressure dependences in the outer liquid and inner solid cores satisfactorily agree with the data of the preliminary reference Earth model (PREM).
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.