{"title":"尽管存在拜占庭对手,仍可对多维函数进行可扩展的分布式优化","authors":"Kananart Kuwaranancharoen;Lei Xin;Shreyas Sundaram","doi":"10.1109/TSIPN.2024.3379844","DOIUrl":null,"url":null,"abstract":"The problem of distributed optimization requires a group of networked agents to compute a parameter that minimizes the average of their local cost functions. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to “Byzantine” agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or assume certain statistical properties of the functions at the agents. In this paper, we provide two resilient, scalable, distributed optimization algorithms for multi-dimensional functions. Our schemes involve two filters, (1) a distance-based filter and (2) a min-max filter, which each remove neighborhood states that are extreme (defined precisely in our algorithms) at each iteration. We show that these algorithms can mitigate the impact of up to \n<inline-formula><tex-math>$F$</tex-math></inline-formula>\n (unknown) Byzantine agents in the neighborhood of each regular agent. In particular, we show that if the network topology satisfies certain conditions, all of the regular agents' states are guaranteed to converge to a bounded region that contains the minimizer of the average of the regular agents' functions.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"360-375"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Distributed Optimization of Multi-Dimensional Functions Despite Byzantine Adversaries\",\"authors\":\"Kananart Kuwaranancharoen;Lei Xin;Shreyas Sundaram\",\"doi\":\"10.1109/TSIPN.2024.3379844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of distributed optimization requires a group of networked agents to compute a parameter that minimizes the average of their local cost functions. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to “Byzantine” agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or assume certain statistical properties of the functions at the agents. In this paper, we provide two resilient, scalable, distributed optimization algorithms for multi-dimensional functions. Our schemes involve two filters, (1) a distance-based filter and (2) a min-max filter, which each remove neighborhood states that are extreme (defined precisely in our algorithms) at each iteration. We show that these algorithms can mitigate the impact of up to \\n<inline-formula><tex-math>$F$</tex-math></inline-formula>\\n (unknown) Byzantine agents in the neighborhood of each regular agent. In particular, we show that if the network topology satisfies certain conditions, all of the regular agents' states are guaranteed to converge to a bounded region that contains the minimizer of the average of the regular agents' functions.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"10 \",\"pages\":\"360-375\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10478151/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10478151/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Scalable Distributed Optimization of Multi-Dimensional Functions Despite Byzantine Adversaries
The problem of distributed optimization requires a group of networked agents to compute a parameter that minimizes the average of their local cost functions. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to “Byzantine” agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or assume certain statistical properties of the functions at the agents. In this paper, we provide two resilient, scalable, distributed optimization algorithms for multi-dimensional functions. Our schemes involve two filters, (1) a distance-based filter and (2) a min-max filter, which each remove neighborhood states that are extreme (defined precisely in our algorithms) at each iteration. We show that these algorithms can mitigate the impact of up to
$F$
(unknown) Byzantine agents in the neighborhood of each regular agent. In particular, we show that if the network topology satisfies certain conditions, all of the regular agents' states are guaranteed to converge to a bounded region that contains the minimizer of the average of the regular agents' functions.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.