{"title":"因子相关性与资产回报截面:相关性稳健的机器学习方法","authors":"Chuanping Sun","doi":"10.1016/j.jempfin.2024.101497","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates high-dimensional factor models for cross-sectional asset returns, with a specific focus on robust estimation in the presence of (highly) correlated factors. Factor correlations can significantly compromise the robustness and credibility of commonly employed analytical methods. To address this, we utilize the stochastic discount factor (SDF) and integrate it with a recently developed Machine Learning methodology (Figueiredo and Nowak, 2016). This novel approach allows us to select factors while accounting for factor correlations and to disentangle correlated factors without imposing rigid assumptions. Our empirical findings consistently highlight the paramount role of the ‘market’ factor in driving cross-sectional asset returns. In contrast, other benchmarks, including the LASSO, the Elastic-Net, and the Fama–MacBeth regression, are adversely impacted by factor correlations, rendering the ‘market’ factor redundant. Additionally, our findings underscore the importance of ‘profitability’, ‘momentum’, and ‘liquidity’-related factors in driving cross-sectional asset returns.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"77 ","pages":"Article 101497"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach\",\"authors\":\"Chuanping Sun\",\"doi\":\"10.1016/j.jempfin.2024.101497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates high-dimensional factor models for cross-sectional asset returns, with a specific focus on robust estimation in the presence of (highly) correlated factors. Factor correlations can significantly compromise the robustness and credibility of commonly employed analytical methods. To address this, we utilize the stochastic discount factor (SDF) and integrate it with a recently developed Machine Learning methodology (Figueiredo and Nowak, 2016). This novel approach allows us to select factors while accounting for factor correlations and to disentangle correlated factors without imposing rigid assumptions. Our empirical findings consistently highlight the paramount role of the ‘market’ factor in driving cross-sectional asset returns. In contrast, other benchmarks, including the LASSO, the Elastic-Net, and the Fama–MacBeth regression, are adversely impacted by factor correlations, rendering the ‘market’ factor redundant. Additionally, our findings underscore the importance of ‘profitability’, ‘momentum’, and ‘liquidity’-related factors in driving cross-sectional asset returns.</p></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"77 \",\"pages\":\"Article 101497\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092753982400032X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092753982400032X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach
This paper investigates high-dimensional factor models for cross-sectional asset returns, with a specific focus on robust estimation in the presence of (highly) correlated factors. Factor correlations can significantly compromise the robustness and credibility of commonly employed analytical methods. To address this, we utilize the stochastic discount factor (SDF) and integrate it with a recently developed Machine Learning methodology (Figueiredo and Nowak, 2016). This novel approach allows us to select factors while accounting for factor correlations and to disentangle correlated factors without imposing rigid assumptions. Our empirical findings consistently highlight the paramount role of the ‘market’ factor in driving cross-sectional asset returns. In contrast, other benchmarks, including the LASSO, the Elastic-Net, and the Fama–MacBeth regression, are adversely impacted by factor correlations, rendering the ‘market’ factor redundant. Additionally, our findings underscore the importance of ‘profitability’, ‘momentum’, and ‘liquidity’-related factors in driving cross-sectional asset returns.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.