Namgun Kim, Whan Kyun Kim, Dongjun Shin, Jong Kyu Kim, Chan Min Lee, Kuk Han Yoon, Youngju Ko, Heeyeop Chae
{"title":"利用氩或氦等离子体对硅进行准原子层蚀刻,并进行表面氯化和清除","authors":"Namgun Kim, Whan Kyun Kim, Dongjun Shin, Jong Kyu Kim, Chan Min Lee, Kuk Han Yoon, Youngju Ko, Heeyeop Chae","doi":"10.1002/ppap.202400016","DOIUrl":null,"url":null,"abstract":"A comparative study of argon (Ar) and helium (He) plasmas is conducted in quasi‐atomic layer etching (ALE) processes for silicon (Si). The ALE window is identified to be between 35 and 55 V for Ar and 25–45 V for He, with an etch per cycle of 6.0 Å/cycle for Ar and 7.5 Å/cycle for He. Thirty percent thicker chlorination layers are observed with Cl<jats:sub>2</jats:sub>/He ALE than with Cl<jats:sub>2</jats:sub>/Ar ALE in the chlorination step. The penetration depth of He ions is twice that of Ar ions, with a standard deviation of 4.5 times greater. This study demonstrates that He ions in the removal steps considerably affect the subsequent modification steps in Si ALE.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi‐atomic layer etching of silicon with surface chlorination and removal using Ar or He plasmas\",\"authors\":\"Namgun Kim, Whan Kyun Kim, Dongjun Shin, Jong Kyu Kim, Chan Min Lee, Kuk Han Yoon, Youngju Ko, Heeyeop Chae\",\"doi\":\"10.1002/ppap.202400016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative study of argon (Ar) and helium (He) plasmas is conducted in quasi‐atomic layer etching (ALE) processes for silicon (Si). The ALE window is identified to be between 35 and 55 V for Ar and 25–45 V for He, with an etch per cycle of 6.0 Å/cycle for Ar and 7.5 Å/cycle for He. Thirty percent thicker chlorination layers are observed with Cl<jats:sub>2</jats:sub>/He ALE than with Cl<jats:sub>2</jats:sub>/Ar ALE in the chlorination step. The penetration depth of He ions is twice that of Ar ions, with a standard deviation of 4.5 times greater. This study demonstrates that He ions in the removal steps considerably affect the subsequent modification steps in Si ALE.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400016\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400016","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在硅 (Si) 的准原子层蚀刻 (ALE) 过程中,对氩 (Ar) 和氦 (He) 等离子体进行了比较研究。确定氩气的 ALE 窗口在 35 至 55 V 之间,氦气的 ALE 窗口在 25 至 45 V 之间,氩气的蚀刻周期为 6.0 Å/周期,氦气的蚀刻周期为 7.5 Å/周期。在氯化步骤中,Cl2/He ALE 比 Cl2/Ar ALE 的氯化层厚 30%。He 离子的穿透深度是 Ar 离子的两倍,标准偏差是 Ar 离子的 4.5 倍。这项研究表明,He 离子在去除步骤中对 Si ALE 的后续改性步骤有很大影响。
Quasi‐atomic layer etching of silicon with surface chlorination and removal using Ar or He plasmas
A comparative study of argon (Ar) and helium (He) plasmas is conducted in quasi‐atomic layer etching (ALE) processes for silicon (Si). The ALE window is identified to be between 35 and 55 V for Ar and 25–45 V for He, with an etch per cycle of 6.0 Å/cycle for Ar and 7.5 Å/cycle for He. Thirty percent thicker chlorination layers are observed with Cl2/He ALE than with Cl2/Ar ALE in the chlorination step. The penetration depth of He ions is twice that of Ar ions, with a standard deviation of 4.5 times greater. This study demonstrates that He ions in the removal steps considerably affect the subsequent modification steps in Si ALE.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.