Bocheng Lei
(, ), Aolin Li
(, ), Wenzhe Zhou
(, ), Yunpeng Wang
(, ), Wei Xiong
(, ), Yu Chen
(, ), Fangping Ouyang
(, )
{"title":"单层正交CrS2的室温铁磁性和半金属性","authors":"Bocheng Lei \n (, ), Aolin Li \n (, ), Wenzhe Zhou \n (, ), Yunpeng Wang \n (, ), Wei Xiong \n (, ), Yu Chen \n (, ), Fangping Ouyang \n (, )","doi":"10.1007/s11467-023-1387-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS<sub>2</sub> phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS<sub>2</sub> is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS<sub>2</sub> is an ideal candidate for future spintronics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2\",\"authors\":\"Bocheng Lei \\n (, ), Aolin Li \\n (, ), Wenzhe Zhou \\n (, ), Yunpeng Wang \\n (, ), Wei Xiong \\n (, ), Yu Chen \\n (, ), Fangping Ouyang \\n (, )\",\"doi\":\"10.1007/s11467-023-1387-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS<sub>2</sub> phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS<sub>2</sub> is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS<sub>2</sub> is an ideal candidate for future spintronics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1387-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1387-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
具有高温铁磁性和半金属性的二维材料在自旋电子器件中有着最新的应用。基于第一原理计算,我们研究了一种具有正交晶格的新型二维 CrS2 相。我们的研究结果表明,它在动力学、热力学和力学方面都很稳定。单层正方晶格 CrS2 的基态具有铁磁性和半金属性,居里温度高达 895 K,自旋翻转间隙高达 0.804 eV。这种室温铁磁性和半金属性可在-5%至5%的强双轴应变下保持稳定。同时,增加应变可显著保持面外磁各向异性。结合轨道分辨磁各向异性能进行的状态密度分析表明,应变增强的 MAE 与铬原子的 3d 轨道分裂高度相关。我们的研究结果表明,单层正交面体 CrS2 是未来自旋电子学的理想候选材料。
Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2
Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS2 phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS2 is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS2 is an ideal candidate for future spintronics.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.