Md Aurangzeb, Sudip Banerjee, Subhankar Roy, Ravi Tejasvi
{"title":"用于分离宽沸程混合物的分壁柱:优化设计和伺服控制策略","authors":"Md Aurangzeb, Sudip Banerjee, Subhankar Roy, Ravi Tejasvi","doi":"10.1002/apj.3065","DOIUrl":null,"url":null,"abstract":"<p>The dividing-wall column (DWC) stands as an energy-efficient distillation technology designed to efficiently separate ternary systems into their pure components within a single column. Despite its efficiency, integrating two towers into a DWC poses challenges in controllability. Published studies have focused on developing controllers for disturbance rejection but have not addressed the issue of servo control. Addressing this, our study proposes a servo controller problem and a methodical approach to strategically select controlled variables that undergo consecutive set point step changes, aiming to track the purity of key products obtained from the DWC. To achieve this goal, we developed a dynamic model specifically tailored to the DWC. Determining the design parameters involved employing a genetic algorithm optimization technique, minimizing the total annual cost. Subsequently, we implemented three servo parallel proportional-integral (PI) feedback controllers for three distinct product streams. The fine-tuning of their controller gain and reset time is carried out by minimizing the integrated square error while adhering to valve opening constraints. Our investigation revealed a limitation: the introduction of simultaneous step changes in all three controlled variables proved unfeasible with the three active PI controllers. As an alternative, our findings recommend prioritizing two variables: the lightest (distillate) and heaviest (bottom) key components, alongside the middle component (side stream) and either the lightest or heaviest key component. This research underscores the complexities of implementing step changes in multiple controlled variables within a DWC, offering insights into optimal control strategies for enhancing the efficiency of this innovative distillation technology.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dividing-wall column for separating wide boiling mixture: Optimal design and servo control strategy\",\"authors\":\"Md Aurangzeb, Sudip Banerjee, Subhankar Roy, Ravi Tejasvi\",\"doi\":\"10.1002/apj.3065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dividing-wall column (DWC) stands as an energy-efficient distillation technology designed to efficiently separate ternary systems into their pure components within a single column. Despite its efficiency, integrating two towers into a DWC poses challenges in controllability. Published studies have focused on developing controllers for disturbance rejection but have not addressed the issue of servo control. Addressing this, our study proposes a servo controller problem and a methodical approach to strategically select controlled variables that undergo consecutive set point step changes, aiming to track the purity of key products obtained from the DWC. To achieve this goal, we developed a dynamic model specifically tailored to the DWC. Determining the design parameters involved employing a genetic algorithm optimization technique, minimizing the total annual cost. Subsequently, we implemented three servo parallel proportional-integral (PI) feedback controllers for three distinct product streams. The fine-tuning of their controller gain and reset time is carried out by minimizing the integrated square error while adhering to valve opening constraints. Our investigation revealed a limitation: the introduction of simultaneous step changes in all three controlled variables proved unfeasible with the three active PI controllers. As an alternative, our findings recommend prioritizing two variables: the lightest (distillate) and heaviest (bottom) key components, alongside the middle component (side stream) and either the lightest or heaviest key component. This research underscores the complexities of implementing step changes in multiple controlled variables within a DWC, offering insights into optimal control strategies for enhancing the efficiency of this innovative distillation technology.</p>\",\"PeriodicalId\":49237,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3065\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dividing-wall column for separating wide boiling mixture: Optimal design and servo control strategy
The dividing-wall column (DWC) stands as an energy-efficient distillation technology designed to efficiently separate ternary systems into their pure components within a single column. Despite its efficiency, integrating two towers into a DWC poses challenges in controllability. Published studies have focused on developing controllers for disturbance rejection but have not addressed the issue of servo control. Addressing this, our study proposes a servo controller problem and a methodical approach to strategically select controlled variables that undergo consecutive set point step changes, aiming to track the purity of key products obtained from the DWC. To achieve this goal, we developed a dynamic model specifically tailored to the DWC. Determining the design parameters involved employing a genetic algorithm optimization technique, minimizing the total annual cost. Subsequently, we implemented three servo parallel proportional-integral (PI) feedback controllers for three distinct product streams. The fine-tuning of their controller gain and reset time is carried out by minimizing the integrated square error while adhering to valve opening constraints. Our investigation revealed a limitation: the introduction of simultaneous step changes in all three controlled variables proved unfeasible with the three active PI controllers. As an alternative, our findings recommend prioritizing two variables: the lightest (distillate) and heaviest (bottom) key components, alongside the middle component (side stream) and either the lightest or heaviest key component. This research underscores the complexities of implementing step changes in multiple controlled variables within a DWC, offering insights into optimal control strategies for enhancing the efficiency of this innovative distillation technology.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).