{"title":"CRA-40 再分析中平流层环流的代表性:北极极地涡旋和准双年涛动","authors":"Zixu Wang, Shirui Yan, Jinggao Hu, Jiechun Deng, Rongcai Ren, Jian Rao","doi":"10.1007/s00376-023-3127-1","DOIUrl":null,"url":null,"abstract":"<p>The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation (QBO) during the period 1981–2019 in a 40-yr Chinese global reanalysis dataset (CRA-40) is evaluated by comparing two widely used reanalysis datasets, ERA-5 and MERRA-2. CRA-40 demonstrates a comparable performance with ERA-5 and MERRA-2 in characterizing the winter and spring circulation in the lower and middle Arctic stratosphere. Specifically, differences in the climatological polar-mean temperature and polar night jet among the three reanalyses are within ±0.5 K and ±0.5 m s<sup>−1</sup>, respectively. The onset dates of the stratospheric sudden warming and stratospheric final warming events at 10 hPa in CRA-40, together with the dynamics and circulation anomalies during the onset process of warming events, are nearly identical to the other two reanalyses with slight differences. By contrast, the CRA-40 dataset demonstrates a deteriorated performance in describing the QBO below 10 hPa compared to the other two reanalysis products, manifested by the larger easterly biases of the QBO index, the remarkably weaker amplitude of the QBO, and the weaker wavelet power of the QBO period. Such pronounced biases are mainly concentrated in the period 1981–98 and largely reduced by at least 39% in 1999–2019. Thus, particular caution is needed in studying the QBO based on CRA-40. All three reanalyses exhibit greater disagreement in the upper stratosphere compared to the lower and middle stratosphere for both the polar region and the tropics.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"165 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of the Stratospheric Circulation in CRA-40 Reanalysis: The Arctic Polar Vortex and the Quasi-Biennial Oscillation\",\"authors\":\"Zixu Wang, Shirui Yan, Jinggao Hu, Jiechun Deng, Rongcai Ren, Jian Rao\",\"doi\":\"10.1007/s00376-023-3127-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation (QBO) during the period 1981–2019 in a 40-yr Chinese global reanalysis dataset (CRA-40) is evaluated by comparing two widely used reanalysis datasets, ERA-5 and MERRA-2. CRA-40 demonstrates a comparable performance with ERA-5 and MERRA-2 in characterizing the winter and spring circulation in the lower and middle Arctic stratosphere. Specifically, differences in the climatological polar-mean temperature and polar night jet among the three reanalyses are within ±0.5 K and ±0.5 m s<sup>−1</sup>, respectively. The onset dates of the stratospheric sudden warming and stratospheric final warming events at 10 hPa in CRA-40, together with the dynamics and circulation anomalies during the onset process of warming events, are nearly identical to the other two reanalyses with slight differences. By contrast, the CRA-40 dataset demonstrates a deteriorated performance in describing the QBO below 10 hPa compared to the other two reanalysis products, manifested by the larger easterly biases of the QBO index, the remarkably weaker amplitude of the QBO, and the weaker wavelet power of the QBO period. Such pronounced biases are mainly concentrated in the period 1981–98 and largely reduced by at least 39% in 1999–2019. Thus, particular caution is needed in studying the QBO based on CRA-40. All three reanalyses exhibit greater disagreement in the upper stratosphere compared to the lower and middle stratosphere for both the polar region and the tropics.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3127-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3127-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Representation of the Stratospheric Circulation in CRA-40 Reanalysis: The Arctic Polar Vortex and the Quasi-Biennial Oscillation
The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation (QBO) during the period 1981–2019 in a 40-yr Chinese global reanalysis dataset (CRA-40) is evaluated by comparing two widely used reanalysis datasets, ERA-5 and MERRA-2. CRA-40 demonstrates a comparable performance with ERA-5 and MERRA-2 in characterizing the winter and spring circulation in the lower and middle Arctic stratosphere. Specifically, differences in the climatological polar-mean temperature and polar night jet among the three reanalyses are within ±0.5 K and ±0.5 m s−1, respectively. The onset dates of the stratospheric sudden warming and stratospheric final warming events at 10 hPa in CRA-40, together with the dynamics and circulation anomalies during the onset process of warming events, are nearly identical to the other two reanalyses with slight differences. By contrast, the CRA-40 dataset demonstrates a deteriorated performance in describing the QBO below 10 hPa compared to the other two reanalysis products, manifested by the larger easterly biases of the QBO index, the remarkably weaker amplitude of the QBO, and the weaker wavelet power of the QBO period. Such pronounced biases are mainly concentrated in the period 1981–98 and largely reduced by at least 39% in 1999–2019. Thus, particular caution is needed in studying the QBO based on CRA-40. All three reanalyses exhibit greater disagreement in the upper stratosphere compared to the lower and middle stratosphere for both the polar region and the tropics.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.