电子枪野生动物园自然环境中线粒体蛋白质与膜相互作用的可视化

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry (Moscow) Pub Date : 2024-03-20 DOI:10.1134/S0006297924020068
Semen V. Nesterov, Konstantin S. Plokhikh, Yuriy M. Chesnokov, Denis A. Mustafin, Tatyana N. Goleva, Anton G. Rogov, Raif G. Vasilov, Lev S. Yaguzhinsky
{"title":"电子枪野生动物园自然环境中线粒体蛋白质与膜相互作用的可视化","authors":"Semen V. Nesterov,&nbsp;Konstantin S. Plokhikh,&nbsp;Yuriy M. Chesnokov,&nbsp;Denis A. Mustafin,&nbsp;Tatyana N. Goleva,&nbsp;Anton G. Rogov,&nbsp;Raif G. Vasilov,&nbsp;Lev S. Yaguzhinsky","doi":"10.1134/S0006297924020068","DOIUrl":null,"url":null,"abstract":"<p>This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aβ42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer’s disease. The results showed that the Aβ42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes <i>in vivo</i>.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safari with an Electron Gun: Visualization of Protein and Membrane Interactions in Mitochondria in Natural Environment\",\"authors\":\"Semen V. Nesterov,&nbsp;Konstantin S. Plokhikh,&nbsp;Yuriy M. Chesnokov,&nbsp;Denis A. Mustafin,&nbsp;Tatyana N. Goleva,&nbsp;Anton G. Rogov,&nbsp;Raif G. Vasilov,&nbsp;Lev S. Yaguzhinsky\",\"doi\":\"10.1134/S0006297924020068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aβ42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer’s disease. The results showed that the Aβ42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes <i>in vivo</i>.</p>\",\"PeriodicalId\":483,\"journal\":{\"name\":\"Biochemistry (Moscow)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow)\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006297924020068\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297924020068","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文利用关联光电子显微镜(CLEM)和低温电子断层扫描技术,展示了线粒体的新结构数据。这些最先进的结构生物学方法可以在自然条件下研究纳米尺度的生物物体。这些方法的非侵入性使其可与在野生动物园观察自然环境中的动物相媲美。论文重点介绍了只有使用这些方法才能完成的两个研究领域。这项研究将 Aβ42 淀粉样蛋白聚集体与线粒体的位置关系可视化,以检验阿尔茨海默病线粒体功能障碍发展的假设。结果表明,Aβ42 聚集体与线粒体之间没有相互作用,尽管其中一些聚集体与线粒体的位置很接近。因此,研究表明线粒体功能障碍与聚集体对线粒体结构的影响没有直接关系。线粒体功能障碍的来源还应考虑其他过程。这项研究的第二个独特领域是线粒体膜及其中蛋白质的高分辨率可视化。对低温电子显微镜数据的分析显示,心脏线粒体嵴的片层结构中存在环形孔,ATP 合成酶就位于其中。该研究提出了一种基于拓扑结构在膜中对蛋白质复合物进行分类和聚类的新机制。根据这一建议,OXPHOS 系统蛋白在膜中的位置由膜的曲率决定。高分辨率层析成像技术扩展并补充了线粒体结构和功能组织的现有观点。这使得研究以前无法获得的蛋白质相互之间以及与体内膜之间的结构相互作用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safari with an Electron Gun: Visualization of Protein and Membrane Interactions in Mitochondria in Natural Environment

This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aβ42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer’s disease. The results showed that the Aβ42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry (Moscow)
Biochemistry (Moscow) 生物-生化与分子生物学
CiteScore
4.70
自引率
3.60%
发文量
139
审稿时长
2 months
期刊介绍: Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).
期刊最新文献
Role of Filamin C in Muscle Cells The Effect of Chronic Overcrowding on Social Behavior and Expression of Neuroinflammation-Associated Genes in Rats Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin A New Approach for Studying Poly(ADP-Ribose) Polymerase Inhibitors Using Permeabilized Adherent Cells Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot–Marie–Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1