{"title":"考虑到三维漏磁的超导机器励磁系统的设计与模拟","authors":"Chen Chen, Wenfeng Zhang","doi":"10.3233/jae-230085","DOIUrl":null,"url":null,"abstract":"The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of a superconducting machine excitation system taking into account the three-dimensional magnetic leakage\",\"authors\":\"Chen Chen, Wenfeng Zhang\",\"doi\":\"10.3233/jae-230085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了新型高温超导转极机的优化设计。其主要结构特点是采用双定子铁芯,将同步机极靴与极体分开,作为机器转子单独旋转,使超导线圈在静止状态下工作。内部定子铁芯、静止磁栅和转子铁芯共同构成了机器的励磁系统。励磁线圈绕组采用矩形截面,在高温超导线圈之间战略性地放置了磁通分流器。这种配置旨在调节背景磁场,特别是减少垂直磁场分量。这种缓解措施最大限度地减少了环境磁场对超导线圈电流承载能力的影响,确保为其运行提供优化的磁场环境。通过整合这些修改,增强型高温超导设备的技术和经济参数得到了显著改善。设计的优化以及三维电磁场的详细计算是利用商业软件 Ansys EM 模块实现的。
Design and simulation of a superconducting machine excitation system taking into account the three-dimensional magnetic leakage
The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.