Susovan Chanda, Ashish Kr. Luhach, J. Sharmila Anand Francis, Indranil Sengupta, Diptendu Sinha Roy
{"title":"基于椭圆曲线梅内塞斯-库-万斯顿的物联网身份验证和加密协议","authors":"Susovan Chanda, Ashish Kr. Luhach, J. Sharmila Anand Francis, Indranil Sengupta, Diptendu Sinha Roy","doi":"10.1155/2024/5998163","DOIUrl":null,"url":null,"abstract":"The exponential growth of the Internet of Things (IoT) has led to a surge in data generation, critical for business decisions. Ensuring data authenticity and integrity over unsecured channels is vital, especially due to potential catastrophic consequences of tampered data. However, IoT’s resource constraints and heterogeneous ecosystem present unique security challenges. Traditional public key infrastructure offers strong security but is resource intensive, while existing cloud-based solutions lack comprehensive security and rise to latency and unwanted wastage of energy. In this paper, we propose a universal authentication scheme using edge computing, incorporating fully hashed Elliptic Curve Menezes–Qu–Vanstone (ECMQV) and PUF. This approach provides a scalable and reliable solution. It also provides security against active attacks, addressing man-in-the-middle and impersonation threats. Experimental validation on a Zybo board confirms its effectiveness, offering a robust security solution for the IoT landscape.","PeriodicalId":501499,"journal":{"name":"Wireless Communications and Mobile Computing","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Elliptic Curve Menezes–Qu–Vanston-Based Authentication and Encryption Protocol for IoT\",\"authors\":\"Susovan Chanda, Ashish Kr. Luhach, J. Sharmila Anand Francis, Indranil Sengupta, Diptendu Sinha Roy\",\"doi\":\"10.1155/2024/5998163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential growth of the Internet of Things (IoT) has led to a surge in data generation, critical for business decisions. Ensuring data authenticity and integrity over unsecured channels is vital, especially due to potential catastrophic consequences of tampered data. However, IoT’s resource constraints and heterogeneous ecosystem present unique security challenges. Traditional public key infrastructure offers strong security but is resource intensive, while existing cloud-based solutions lack comprehensive security and rise to latency and unwanted wastage of energy. In this paper, we propose a universal authentication scheme using edge computing, incorporating fully hashed Elliptic Curve Menezes–Qu–Vanstone (ECMQV) and PUF. This approach provides a scalable and reliable solution. It also provides security against active attacks, addressing man-in-the-middle and impersonation threats. Experimental validation on a Zybo board confirms its effectiveness, offering a robust security solution for the IoT landscape.\",\"PeriodicalId\":501499,\"journal\":{\"name\":\"Wireless Communications and Mobile Computing\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Communications and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5998163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5998163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Elliptic Curve Menezes–Qu–Vanston-Based Authentication and Encryption Protocol for IoT
The exponential growth of the Internet of Things (IoT) has led to a surge in data generation, critical for business decisions. Ensuring data authenticity and integrity over unsecured channels is vital, especially due to potential catastrophic consequences of tampered data. However, IoT’s resource constraints and heterogeneous ecosystem present unique security challenges. Traditional public key infrastructure offers strong security but is resource intensive, while existing cloud-based solutions lack comprehensive security and rise to latency and unwanted wastage of energy. In this paper, we propose a universal authentication scheme using edge computing, incorporating fully hashed Elliptic Curve Menezes–Qu–Vanstone (ECMQV) and PUF. This approach provides a scalable and reliable solution. It also provides security against active attacks, addressing man-in-the-middle and impersonation threats. Experimental validation on a Zybo board confirms its effectiveness, offering a robust security solution for the IoT landscape.