Mohammad Tarikuzzaman, Viral Sagar, Mark James Wong, Joan G. Lynam
{"title":"温度对糖基天然深共晶溶剂理化特性的影响","authors":"Mohammad Tarikuzzaman, Viral Sagar, Mark James Wong, Joan G. Lynam","doi":"10.1155/2024/6641317","DOIUrl":null,"url":null,"abstract":"Phase behavior, density, viscosity, conductivity, pH, and surface tension were measured, and FTIR was performed for a series of mixtures of sugar (glucose, fructose, xylose, and sucrose), water, and choline chloride (ChCl) at specific molar ratios. These mixtures, called sugar-based natural deep eutectic solvents (NADESs), were investigated as a function of temperature. Contact angle measurements indicated that NADES exhibited slightly lower wettability but higher surface tension than water. Temperature was found to greatly impact density, viscosity, and conductivity. The optimum water molar ratio for lower viscosity was found at ratios higher than those reported in the literature, indicating that the NADES investigated may have industrial process applications.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Effects on Physiochemical Characteristics of Sugar-Based Natural Deep Eutectic Solvents\",\"authors\":\"Mohammad Tarikuzzaman, Viral Sagar, Mark James Wong, Joan G. Lynam\",\"doi\":\"10.1155/2024/6641317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase behavior, density, viscosity, conductivity, pH, and surface tension were measured, and FTIR was performed for a series of mixtures of sugar (glucose, fructose, xylose, and sucrose), water, and choline chloride (ChCl) at specific molar ratios. These mixtures, called sugar-based natural deep eutectic solvents (NADESs), were investigated as a function of temperature. Contact angle measurements indicated that NADES exhibited slightly lower wettability but higher surface tension than water. Temperature was found to greatly impact density, viscosity, and conductivity. The optimum water molar ratio for lower viscosity was found at ratios higher than those reported in the literature, indicating that the NADES investigated may have industrial process applications.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6641317\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/6641317","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Temperature Effects on Physiochemical Characteristics of Sugar-Based Natural Deep Eutectic Solvents
Phase behavior, density, viscosity, conductivity, pH, and surface tension were measured, and FTIR was performed for a series of mixtures of sugar (glucose, fructose, xylose, and sucrose), water, and choline chloride (ChCl) at specific molar ratios. These mixtures, called sugar-based natural deep eutectic solvents (NADESs), were investigated as a function of temperature. Contact angle measurements indicated that NADES exhibited slightly lower wettability but higher surface tension than water. Temperature was found to greatly impact density, viscosity, and conductivity. The optimum water molar ratio for lower viscosity was found at ratios higher than those reported in the literature, indicating that the NADES investigated may have industrial process applications.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)