基于离心试验的预制挡土墙系统性能评估

IF 1.5 4区 工程技术 Q3 ENGINEERING, CIVIL Proceedings of the Institution of Civil Engineers-Engineering Sustainability Pub Date : 2024-02-14 DOI:10.1680/jensu.23.00072
Honglue Qu, Wangwang Dong, Zhaolong Li, Gopal Santana Phani Madabhushi
{"title":"基于离心试验的预制挡土墙系统性能评估","authors":"Honglue Qu, Wangwang Dong, Zhaolong Li, Gopal Santana Phani Madabhushi","doi":"10.1680/jensu.23.00072","DOIUrl":null,"url":null,"abstract":"Prefabricated and assembled retaining wall systems are gradually becoming the choice for slope stabilisation and earth-retaining structures. However, current prefabricated retaining wall systems are often difficult to apply in complex and variable construction sites due to issues such as inconsistent production dimensions and transportation difficulties. This paper presents a novel prefabricated retaining wall system and reports centrifuge model tests performed to analyse its overall performance. The influence of different infill materials on the performance of the prefabricated retaining wall system was studied. The research findings reveal that the retaining wall system provides significant slope stabilisation effects and can withstand up to four times the stress level of a natural slope. Moreover, the stability of the retaining wall system is more than twice better when infilled with frictional soil compared with that when clay infill is used. Due to its unique structure, it can not only reduce material consumption and carbon dioxide emissions by around 63.94% but also allow planting of green plants in the gaps of components, thereby providing a more sustainable alternative to conventional concrete gravity wall systems.","PeriodicalId":49671,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Engineering Sustainability","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of prefabricated retaining wall systems based on centrifuge tests\",\"authors\":\"Honglue Qu, Wangwang Dong, Zhaolong Li, Gopal Santana Phani Madabhushi\",\"doi\":\"10.1680/jensu.23.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prefabricated and assembled retaining wall systems are gradually becoming the choice for slope stabilisation and earth-retaining structures. However, current prefabricated retaining wall systems are often difficult to apply in complex and variable construction sites due to issues such as inconsistent production dimensions and transportation difficulties. This paper presents a novel prefabricated retaining wall system and reports centrifuge model tests performed to analyse its overall performance. The influence of different infill materials on the performance of the prefabricated retaining wall system was studied. The research findings reveal that the retaining wall system provides significant slope stabilisation effects and can withstand up to four times the stress level of a natural slope. Moreover, the stability of the retaining wall system is more than twice better when infilled with frictional soil compared with that when clay infill is used. Due to its unique structure, it can not only reduce material consumption and carbon dioxide emissions by around 63.94% but also allow planting of green plants in the gaps of components, thereby providing a more sustainable alternative to conventional concrete gravity wall systems.\",\"PeriodicalId\":49671,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Engineering Sustainability\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Engineering Sustainability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jensu.23.00072\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Engineering Sustainability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jensu.23.00072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

预制和装配式挡土墙系统正逐渐成为边坡加固和土方保持结构的首选。然而,由于生产尺寸不一致和运输困难等问题,目前的预制挡土墙系统往往难以应用于复杂多变的施工现场。本文介绍了一种新型预制挡土墙系统,并报告了为分析其整体性能而进行的离心机模型试验。研究了不同填充材料对预制挡土墙系统性能的影响。研究结果表明,挡土墙系统具有显著的斜坡稳定效果,可承受高达天然斜坡四倍的应力水平。此外,与使用粘土填充物相比,用摩擦土填充挡土墙系统的稳定性要好两倍以上。由于其独特的结构,它不仅能减少约 63.94% 的材料消耗和二氧化碳排放,还能在构件间隙种植绿色植物,从而为传统的混凝土重力墙系统提供了一个更具可持续性的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of prefabricated retaining wall systems based on centrifuge tests
Prefabricated and assembled retaining wall systems are gradually becoming the choice for slope stabilisation and earth-retaining structures. However, current prefabricated retaining wall systems are often difficult to apply in complex and variable construction sites due to issues such as inconsistent production dimensions and transportation difficulties. This paper presents a novel prefabricated retaining wall system and reports centrifuge model tests performed to analyse its overall performance. The influence of different infill materials on the performance of the prefabricated retaining wall system was studied. The research findings reveal that the retaining wall system provides significant slope stabilisation effects and can withstand up to four times the stress level of a natural slope. Moreover, the stability of the retaining wall system is more than twice better when infilled with frictional soil compared with that when clay infill is used. Due to its unique structure, it can not only reduce material consumption and carbon dioxide emissions by around 63.94% but also allow planting of green plants in the gaps of components, thereby providing a more sustainable alternative to conventional concrete gravity wall systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
16.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: Engineering Sustainability provides a forum for sharing the latest thinking from research and practice, and increasingly is presenting the ''how to'' of engineering a resilient future. The journal features refereed papers and shorter articles relating to the pursuit and implementation of sustainability principles through engineering planning, design and application. The tensions between and integration of social, economic and environmental considerations within such schemes are of particular relevance. Methodologies for assessing sustainability, policy issues, education and corporate responsibility will also be included. The aims will be met primarily by providing papers and briefing notes (including case histories and best practice guidance) of use to decision-makers, practitioners, researchers and students.
期刊最新文献
Thermal conductivity of an external wall with simulated smart Aerogel insulation system Life cycle based considerations in design of driven piles in sand Establishing preference ranking for town water supply in remote areas: case study in Taiwan Performance evaluation of prefabricated retaining wall systems based on centrifuge tests Urban microclimate analysis: residential block morphology impact on outdoor thermal comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1