{"title":"用于时敏问题解答的语境增强型自适应图网络","authors":"Jitong Li, Shaojuan Wu, Xiaowang Zhang, Zhiyong Feng","doi":"10.1145/3653674","DOIUrl":null,"url":null,"abstract":"<p>Time-sensitive question answering is to answer questions limited to certain timestamps based on the given long document, which mixes abundant temporal events with an explicit or implicit timestamp. While existing models make great progress in answering time-sensitive questions, their performance degrades dramatically when a long distance separates the correct answer from the timestamp mentioned in the question. In this paper, we propose a Context-enhanced Adaptive Graph network (CoAG) to capture long-distance dependencies between sentences within the extracted question-related episodes. Specifically, we propose a time-aware episode extraction module that obtains question-related context based on timestamps in the question and document. As the involvement of episodes confuses sentences with adjacent timestamps, an adaptive message passing mechanism is designed to capture and transfer inter-sentence differences. In addition, we present a hybrid text encoder to highlight question-related context built on global information. Experimental results show that CoAG significantly improves compared to state-of-the-art models on five benchmarks. Moreover, our model has a noticeable advantage in solving long-distance time-sensitive questions, improving the EM scores by 2.03% to 6.04% on TimeQA-Hard.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Context-enhanced Adaptive Graph Network for Time-sensitive Question Answering\",\"authors\":\"Jitong Li, Shaojuan Wu, Xiaowang Zhang, Zhiyong Feng\",\"doi\":\"10.1145/3653674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Time-sensitive question answering is to answer questions limited to certain timestamps based on the given long document, which mixes abundant temporal events with an explicit or implicit timestamp. While existing models make great progress in answering time-sensitive questions, their performance degrades dramatically when a long distance separates the correct answer from the timestamp mentioned in the question. In this paper, we propose a Context-enhanced Adaptive Graph network (CoAG) to capture long-distance dependencies between sentences within the extracted question-related episodes. Specifically, we propose a time-aware episode extraction module that obtains question-related context based on timestamps in the question and document. As the involvement of episodes confuses sentences with adjacent timestamps, an adaptive message passing mechanism is designed to capture and transfer inter-sentence differences. In addition, we present a hybrid text encoder to highlight question-related context built on global information. Experimental results show that CoAG significantly improves compared to state-of-the-art models on five benchmarks. Moreover, our model has a noticeable advantage in solving long-distance time-sensitive questions, improving the EM scores by 2.03% to 6.04% on TimeQA-Hard.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653674\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653674","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
时敏问题解答是指根据给定的长文档回答仅限于特定时间戳的问题,该文档中混杂了大量带有显式或隐式时间戳的时间事件。虽然现有模型在回答时敏问题方面取得了很大进步,但当正确答案与问题中提到的时间戳相距甚远时,这些模型的性能就会急剧下降。在本文中,我们提出了一种上下文增强自适应图网络(CoAG)来捕捉提取的问题相关情节中句子之间的长距离依赖关系。具体来说,我们提出了一个时间感知的情节提取模块,该模块可根据问题和文档中的时间戳获取与问题相关的上下文。由于情节的参与会混淆时间戳相邻的句子,因此我们设计了一种自适应信息传递机制,以捕捉和传递句子间的差异。此外,我们还提出了一种混合文本编码器,以突出基于全局信息的问题相关上下文。实验结果表明,在五个基准测试中,CoAG 与最先进的模型相比有显著提高。此外,我们的模型在解决长距离时间敏感问题方面具有明显优势,在 TimeQA-Hard 上的 EM 分数提高了 2.03% 到 6.04%。
A Context-enhanced Adaptive Graph Network for Time-sensitive Question Answering
Time-sensitive question answering is to answer questions limited to certain timestamps based on the given long document, which mixes abundant temporal events with an explicit or implicit timestamp. While existing models make great progress in answering time-sensitive questions, their performance degrades dramatically when a long distance separates the correct answer from the timestamp mentioned in the question. In this paper, we propose a Context-enhanced Adaptive Graph network (CoAG) to capture long-distance dependencies between sentences within the extracted question-related episodes. Specifically, we propose a time-aware episode extraction module that obtains question-related context based on timestamps in the question and document. As the involvement of episodes confuses sentences with adjacent timestamps, an adaptive message passing mechanism is designed to capture and transfer inter-sentence differences. In addition, we present a hybrid text encoder to highlight question-related context built on global information. Experimental results show that CoAG significantly improves compared to state-of-the-art models on five benchmarks. Moreover, our model has a noticeable advantage in solving long-distance time-sensitive questions, improving the EM scores by 2.03% to 6.04% on TimeQA-Hard.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.