Francesco Betti Sorbelli, Federico Corò, Sajal K. Das, Lorenzo Palazzetti, Cristina M. Pinotti
{"title":"基于无人机的果园虫害探测网:一种新颖的定向方法","authors":"Francesco Betti Sorbelli, Federico Corò, Sajal K. Das, Lorenzo Palazzetti, Cristina M. Pinotti","doi":"10.1145/3653713","DOIUrl":null,"url":null,"abstract":"<p>The use of drones for collecting information and detecting bugs in orchards covered by nets is a challenging problem. The nets help in reducing pest damage, but they also constrain the drone’s flight path, making it longer and more complex. To address this issue, we model the orchard as an aisle-graph, a regular data structure that represents consecutive aisles where trees are arranged in straight lines. The drone flies close to the trees and takes pictures at specific positions for monitoring the presence of bugs, but its energy is limited, so it can only visit a subset of positions. To tackle this challenge, we introduce the Single-drone Orienteering Aisle-graph Problem (SOAP), a variant of the orienteering problem, where likely infested locations are prioritized by assigning them a larger profit. Additionally, the drone’s movements have a cost in terms of energy, and the objective is to plan a drone’s route in the most profitable locations under a given drone’s battery. We show that SOAP can be optimally solved in polynomial time, but for larger orchards/instances, we propose faster approximation and heuristic algorithms. Finally, we evaluate the algorithms on synthetic and real data sets to demonstrate their effectiveness and efficiency.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drone-based Bug Detection in Orchards with Nets: A Novel Orienteering Approach\",\"authors\":\"Francesco Betti Sorbelli, Federico Corò, Sajal K. Das, Lorenzo Palazzetti, Cristina M. Pinotti\",\"doi\":\"10.1145/3653713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of drones for collecting information and detecting bugs in orchards covered by nets is a challenging problem. The nets help in reducing pest damage, but they also constrain the drone’s flight path, making it longer and more complex. To address this issue, we model the orchard as an aisle-graph, a regular data structure that represents consecutive aisles where trees are arranged in straight lines. The drone flies close to the trees and takes pictures at specific positions for monitoring the presence of bugs, but its energy is limited, so it can only visit a subset of positions. To tackle this challenge, we introduce the Single-drone Orienteering Aisle-graph Problem (SOAP), a variant of the orienteering problem, where likely infested locations are prioritized by assigning them a larger profit. Additionally, the drone’s movements have a cost in terms of energy, and the objective is to plan a drone’s route in the most profitable locations under a given drone’s battery. We show that SOAP can be optimally solved in polynomial time, but for larger orchards/instances, we propose faster approximation and heuristic algorithms. Finally, we evaluate the algorithms on synthetic and real data sets to demonstrate their effectiveness and efficiency.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653713\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653713","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Drone-based Bug Detection in Orchards with Nets: A Novel Orienteering Approach
The use of drones for collecting information and detecting bugs in orchards covered by nets is a challenging problem. The nets help in reducing pest damage, but they also constrain the drone’s flight path, making it longer and more complex. To address this issue, we model the orchard as an aisle-graph, a regular data structure that represents consecutive aisles where trees are arranged in straight lines. The drone flies close to the trees and takes pictures at specific positions for monitoring the presence of bugs, but its energy is limited, so it can only visit a subset of positions. To tackle this challenge, we introduce the Single-drone Orienteering Aisle-graph Problem (SOAP), a variant of the orienteering problem, where likely infested locations are prioritized by assigning them a larger profit. Additionally, the drone’s movements have a cost in terms of energy, and the objective is to plan a drone’s route in the most profitable locations under a given drone’s battery. We show that SOAP can be optimally solved in polynomial time, but for larger orchards/instances, we propose faster approximation and heuristic algorithms. Finally, we evaluate the algorithms on synthetic and real data sets to demonstrate their effectiveness and efficiency.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.