用于描述铜合金松弛行为的夏波奇型粘弹性材料模型的数据驱动型加速参数识别技术

IF 2 3区 工程技术 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Experimental Mechanics Pub Date : 2024-03-21 DOI:10.1007/s11340-024-01057-x
L. Morand, E. Norouzi, M. Weber, A. Butz, D. Helm
{"title":"用于描述铜合金松弛行为的夏波奇型粘弹性材料模型的数据驱动型加速参数识别技术","authors":"L. Morand,&nbsp;E. Norouzi,&nbsp;M. Weber,&nbsp;A. Butz,&nbsp;D. Helm","doi":"10.1007/s11340-024-01057-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Calibrating material models to experimental measurements is crucial for realistic computational analysis of components. For complex material models, however, optimization-based identification procedures can become time-consuming, particularly if the optimization problem is ill-posed.</p><h3>Objective</h3><p>The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this identification approach using short-term uniaxial relaxation tests on a C19010 copper alloy.</p><h3>Methods</h3><p>A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The neural networks-based approach is compared against a classic approach using both, synthetic and experimental data.</p><h3>Results</h3><p>The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem.</p><h3>Conclusion</h3><p>Compared to classic parameter identification approaches, machine learning techniques can significantly accelerate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 5","pages":"691 - 702"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01057-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Accelerated Parameter Identification for Chaboche-Type Visco-Plastic Material Models to Describe the Relaxation Behavior of Copper Alloys\",\"authors\":\"L. Morand,&nbsp;E. Norouzi,&nbsp;M. Weber,&nbsp;A. Butz,&nbsp;D. Helm\",\"doi\":\"10.1007/s11340-024-01057-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Calibrating material models to experimental measurements is crucial for realistic computational analysis of components. For complex material models, however, optimization-based identification procedures can become time-consuming, particularly if the optimization problem is ill-posed.</p><h3>Objective</h3><p>The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this identification approach using short-term uniaxial relaxation tests on a C19010 copper alloy.</p><h3>Methods</h3><p>A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The neural networks-based approach is compared against a classic approach using both, synthetic and experimental data.</p><h3>Results</h3><p>The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem.</p><h3>Conclusion</h3><p>Compared to classic parameter identification approaches, machine learning techniques can significantly accelerate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"64 5\",\"pages\":\"691 - 702\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11340-024-01057-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-024-01057-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01057-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 背景 根据实验测量结果校准材料模型对于对部件进行现实计算分析至关重要。然而,对于复杂的材料模型,基于优化的识别程序可能会变得非常耗时,尤其是在优化问题难以确定的情况下。 本文的目的是评估使用机器学习识别描述铜合金的 Chaboche 型材料模型参数的可行性。具体来说,我们使用 C19010 铜合金的短期单轴松弛试验来应用和分析这种识别方法。 方法 遗传算法是识别 Chaboche 型材料模型参数的基础。通过神经网络替代实验装置的数值模拟,加速了该方法的应用。使用合成数据和实验数据将基于神经网络的方法与传统方法进行了比较。 结果 结果表明,一方面,传统但耗时的遗传算法可以实现足够精确的材料模型参数识别。另一方面,结果表明机器学习可以实现更省时省力的识别过程,但也会受到识别问题拟合不良的影响。 结论 与传统的参数识别方法相比,机器学习技术可以大大加快 Chaboche 型材料模型参数的识别过程,而精度损失是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Accelerated Parameter Identification for Chaboche-Type Visco-Plastic Material Models to Describe the Relaxation Behavior of Copper Alloys

Background

Calibrating material models to experimental measurements is crucial for realistic computational analysis of components. For complex material models, however, optimization-based identification procedures can become time-consuming, particularly if the optimization problem is ill-posed.

Objective

The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this identification approach using short-term uniaxial relaxation tests on a C19010 copper alloy.

Methods

A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The neural networks-based approach is compared against a classic approach using both, synthetic and experimental data.

Results

The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem.

Conclusion

Compared to classic parameter identification approaches, machine learning techniques can significantly accelerate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Mechanics
Experimental Mechanics 物理-材料科学:表征与测试
CiteScore
4.40
自引率
16.70%
发文量
111
审稿时长
3 months
期刊介绍: Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome. Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.
期刊最新文献
A Note of Gratitude from the Editor-in-Chief On the Cover: Accounting for Localized Deformation: A Simple Computation of True Stress in Micropillar Compression Experiments Dynamic Magneto-Mechanical Analysis of Isotropic and Anisotropic Magneto-Active Elastomers Measurement of the Tension Loss in a Cable Traveling Over a Pulley, for Low-Speed Applications Biomechanical Hand Model: Modeling and Simulating the Lateral Pinch Movement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1