Khalil Abo-Amsha, Hazem S. A. M. Awad, Umair Ahmed, Nilanjan Chakraborty, Nedunchezhian Swaminathan
{"title":"论甲烷和正庚烷废气再循环型湍流 MILD 燃烧中反应进展变量的定义","authors":"Khalil Abo-Amsha, Hazem S. A. M. Awad, Umair Ahmed, Nilanjan Chakraborty, Nedunchezhian Swaminathan","doi":"10.1007/s10494-024-00537-3","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional Direct Numerical Simulations of Exhaust Gas Recirculation (EGR)-type Moderate or Intense Low Oxygen Dilution (MILD) combustion of homogeneous mixtures of methane- and n-heptane–air have been conducted with skeletal chemical mechanisms. The suitability of different choices of reaction progress variable (which is supposed to increase monotonically from zero in the unburned gas to one in fully burned products) based on the mass fractions of different major species and non-dimensional temperature have been analysed in detail. It has been found that reaction progress variable definitions based on oxygen mass fraction, and linear combination of CO, CO<sub>2</sub>, H<sub>2</sub> and H<sub>2</sub>O mass fractions (i.e. <span>\\({c}_{O2}\\)</span> and <span>\\({c}_{c}\\)</span>) capture all the extreme values of the major species in the range between zero and one under MILD conditions. A reaction progress variable based on fuel mass fraction is found to be unsuitable for heavy hydrocarbons, such as n-heptane, since the fuel breaks down to smaller molecules before the major reactants (products) are completely consumed (formed). Moreover, it has been found that the reaction rates of <span>\\({c}_{O2}\\)</span> and <span>\\({c}_{c}\\)</span> exhibit approximate linear behaviours with the heat release rate in both methane and n-heptane MILD combustion. The interdependence of different mass fractions in the EGR-type homogeneous mixture combustion is considerably different from the corresponding 1D unstretched premixed flames. The current findings indicate that the tabulated chemistry approach based on premixed laminar flames may need to be modified to account for EGR-type MILD combustion. Furthermore, both the reaction rate and scalar dissipation rate of <span>\\({c}_{O2}\\)</span> and <span>\\({c}_{c}\\)</span> are found to be non-linearly related in both methane and n-heptane MILD combustion cases but the qualitative nature of this correlation for n-heptane is different from that in methane. This suggests that the range of validity of SDR-based turbulent combustion models can be different for homogeneous MILD combustion of different fuels.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"112 4","pages":"1191 - 1213"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00537-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Definition of Reaction Progress Variable in Exhaust Gas Recirculation Type Turbulent MILD Combustion of Methane and n-Heptane\",\"authors\":\"Khalil Abo-Amsha, Hazem S. A. M. Awad, Umair Ahmed, Nilanjan Chakraborty, Nedunchezhian Swaminathan\",\"doi\":\"10.1007/s10494-024-00537-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional Direct Numerical Simulations of Exhaust Gas Recirculation (EGR)-type Moderate or Intense Low Oxygen Dilution (MILD) combustion of homogeneous mixtures of methane- and n-heptane–air have been conducted with skeletal chemical mechanisms. The suitability of different choices of reaction progress variable (which is supposed to increase monotonically from zero in the unburned gas to one in fully burned products) based on the mass fractions of different major species and non-dimensional temperature have been analysed in detail. It has been found that reaction progress variable definitions based on oxygen mass fraction, and linear combination of CO, CO<sub>2</sub>, H<sub>2</sub> and H<sub>2</sub>O mass fractions (i.e. <span>\\\\({c}_{O2}\\\\)</span> and <span>\\\\({c}_{c}\\\\)</span>) capture all the extreme values of the major species in the range between zero and one under MILD conditions. A reaction progress variable based on fuel mass fraction is found to be unsuitable for heavy hydrocarbons, such as n-heptane, since the fuel breaks down to smaller molecules before the major reactants (products) are completely consumed (formed). Moreover, it has been found that the reaction rates of <span>\\\\({c}_{O2}\\\\)</span> and <span>\\\\({c}_{c}\\\\)</span> exhibit approximate linear behaviours with the heat release rate in both methane and n-heptane MILD combustion. The interdependence of different mass fractions in the EGR-type homogeneous mixture combustion is considerably different from the corresponding 1D unstretched premixed flames. The current findings indicate that the tabulated chemistry approach based on premixed laminar flames may need to be modified to account for EGR-type MILD combustion. Furthermore, both the reaction rate and scalar dissipation rate of <span>\\\\({c}_{O2}\\\\)</span> and <span>\\\\({c}_{c}\\\\)</span> are found to be non-linearly related in both methane and n-heptane MILD combustion cases but the qualitative nature of this correlation for n-heptane is different from that in methane. This suggests that the range of validity of SDR-based turbulent combustion models can be different for homogeneous MILD combustion of different fuels.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"112 4\",\"pages\":\"1191 - 1213\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-024-00537-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00537-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00537-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
On the Definition of Reaction Progress Variable in Exhaust Gas Recirculation Type Turbulent MILD Combustion of Methane and n-Heptane
Three-dimensional Direct Numerical Simulations of Exhaust Gas Recirculation (EGR)-type Moderate or Intense Low Oxygen Dilution (MILD) combustion of homogeneous mixtures of methane- and n-heptane–air have been conducted with skeletal chemical mechanisms. The suitability of different choices of reaction progress variable (which is supposed to increase monotonically from zero in the unburned gas to one in fully burned products) based on the mass fractions of different major species and non-dimensional temperature have been analysed in detail. It has been found that reaction progress variable definitions based on oxygen mass fraction, and linear combination of CO, CO2, H2 and H2O mass fractions (i.e. \({c}_{O2}\) and \({c}_{c}\)) capture all the extreme values of the major species in the range between zero and one under MILD conditions. A reaction progress variable based on fuel mass fraction is found to be unsuitable for heavy hydrocarbons, such as n-heptane, since the fuel breaks down to smaller molecules before the major reactants (products) are completely consumed (formed). Moreover, it has been found that the reaction rates of \({c}_{O2}\) and \({c}_{c}\) exhibit approximate linear behaviours with the heat release rate in both methane and n-heptane MILD combustion. The interdependence of different mass fractions in the EGR-type homogeneous mixture combustion is considerably different from the corresponding 1D unstretched premixed flames. The current findings indicate that the tabulated chemistry approach based on premixed laminar flames may need to be modified to account for EGR-type MILD combustion. Furthermore, both the reaction rate and scalar dissipation rate of \({c}_{O2}\) and \({c}_{c}\) are found to be non-linearly related in both methane and n-heptane MILD combustion cases but the qualitative nature of this correlation for n-heptane is different from that in methane. This suggests that the range of validity of SDR-based turbulent combustion models can be different for homogeneous MILD combustion of different fuels.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.