异构认知无线电网络中用于盲会合的复合信道跳频算法

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS Telecommunication Systems Pub Date : 2024-03-20 DOI:10.1007/s11235-024-01123-8
Sangeeta Sa, Arunanshu Mahapatro
{"title":"异构认知无线电网络中用于盲会合的复合信道跳频算法","authors":"Sangeeta Sa, Arunanshu Mahapatro","doi":"10.1007/s11235-024-01123-8","DOIUrl":null,"url":null,"abstract":"<p>In cognitive radio networks (CRNs), rendezvous is the vital step prior to the communication between two unlicensed secondary users (SUs), where the SUs hop on the same channel at the same time to establish a link. With the dramatic fall in the cost and size of wireless transceivers, it becomes more reasonable to apply multiple radios to achieve significant improvement in the rendezvous performance. However, most of the existing multiradio rendezvous algorithms are proposed for homogeneous CRNs where all the SUs are equipped with an equal number of radios and do not possess backward compatibility to SU with a single radio. In reality, the CRNs are heterogeneous in nature as SUs may have different numbers of radios. In this paper, a composite CH algorithm is proposed for an asynchronous and heterogeneous network to achieve blind rendezvous with full rendezvous diversity. An SU with <i>m</i> number radios are categorized into three groups those follow different channel hopping (CH) algorithms. The upper bound of the rendezvous latency is being evaluated with a brief theoretical and mathematical analysis. Extensive simulations have conducted for different performance metrics, and the results are compared with the state-of-art algorithms. Overall, the proposed algorithm shows better performance in heterogeneous CRNs.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A composite channel hopping algorithm for blind rendezvous in heterogeneous cognitive radio networks\",\"authors\":\"Sangeeta Sa, Arunanshu Mahapatro\",\"doi\":\"10.1007/s11235-024-01123-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In cognitive radio networks (CRNs), rendezvous is the vital step prior to the communication between two unlicensed secondary users (SUs), where the SUs hop on the same channel at the same time to establish a link. With the dramatic fall in the cost and size of wireless transceivers, it becomes more reasonable to apply multiple radios to achieve significant improvement in the rendezvous performance. However, most of the existing multiradio rendezvous algorithms are proposed for homogeneous CRNs where all the SUs are equipped with an equal number of radios and do not possess backward compatibility to SU with a single radio. In reality, the CRNs are heterogeneous in nature as SUs may have different numbers of radios. In this paper, a composite CH algorithm is proposed for an asynchronous and heterogeneous network to achieve blind rendezvous with full rendezvous diversity. An SU with <i>m</i> number radios are categorized into three groups those follow different channel hopping (CH) algorithms. The upper bound of the rendezvous latency is being evaluated with a brief theoretical and mathematical analysis. Extensive simulations have conducted for different performance metrics, and the results are compared with the state-of-art algorithms. Overall, the proposed algorithm shows better performance in heterogeneous CRNs.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01123-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01123-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在认知无线电网络(CRNs)中,会合是两个未授权的次级用户(SUs)之间通信前的重要步骤,SUs 在同一时间跳转到同一信道以建立链接。随着无线收发器成本和尺寸的大幅下降,应用多无线电来显著提高会合性能变得更加合理。然而,现有的多无线电交会算法大多是针对同构 CRN 提出的,在同构 CRN 中,所有 SU 都配备了相同数量的无线电,并且不具备向后兼容单无线电 SU 的能力。在现实中,CRN 是异构的,因为 SU 可能有不同数量的无线电。本文针对异步异构网络提出了一种复合 CH 算法,以实现盲交会和完全交会分集。一个有 m 个无线电设备的 SU 被分为三组,分别采用不同的信道跳频(CH)算法。通过简要的理论和数学分析,对交会延迟的上限进行了评估。针对不同的性能指标进行了大量模拟,并将结果与最先进的算法进行了比较。总体而言,所提出的算法在异构 CRN 中表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A composite channel hopping algorithm for blind rendezvous in heterogeneous cognitive radio networks

In cognitive radio networks (CRNs), rendezvous is the vital step prior to the communication between two unlicensed secondary users (SUs), where the SUs hop on the same channel at the same time to establish a link. With the dramatic fall in the cost and size of wireless transceivers, it becomes more reasonable to apply multiple radios to achieve significant improvement in the rendezvous performance. However, most of the existing multiradio rendezvous algorithms are proposed for homogeneous CRNs where all the SUs are equipped with an equal number of radios and do not possess backward compatibility to SU with a single radio. In reality, the CRNs are heterogeneous in nature as SUs may have different numbers of radios. In this paper, a composite CH algorithm is proposed for an asynchronous and heterogeneous network to achieve blind rendezvous with full rendezvous diversity. An SU with m number radios are categorized into three groups those follow different channel hopping (CH) algorithms. The upper bound of the rendezvous latency is being evaluated with a brief theoretical and mathematical analysis. Extensive simulations have conducted for different performance metrics, and the results are compared with the state-of-art algorithms. Overall, the proposed algorithm shows better performance in heterogeneous CRNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
期刊最新文献
Next-cell prediction with LSTM based on vehicle mobility for 5G mc-IoT slices Secure positioning of wireless sensor networks against wormhole attacks Safeguarding the Internet of Health Things: advancements, challenges, and trust-based solution Optimized task offloading for federated learning based on β-skeleton graph in edge computing Noise robust automatic speaker verification systems: review and analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1