Yakoub Ladjal-Ettoumi, Lina Hadjer Douik, Meriem Hamadi, Johar Amin Ahmed Abdullah, Zakaria Cherifi, Mohamed Nadir Keddar, Mahammed Zidour, Akmal Nazir
{"title":"等电沉淀法获得的螺旋藻和小球藻蛋白质的理化和功能特性","authors":"Yakoub Ladjal-Ettoumi, Lina Hadjer Douik, Meriem Hamadi, Johar Amin Ahmed Abdullah, Zakaria Cherifi, Mohamed Nadir Keddar, Mahammed Zidour, Akmal Nazir","doi":"10.1007/s11483-024-09836-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, microalgae proteins (<i>Spirulina</i> and <i>Chlorella</i>) were extracted, characterized, and investigated for their potential techno-functionalities. The proteins from the microalgae biomass were extracted by alkaline solubilization followed by iso-electric precipitation. Subsequently, their physicochemical characteristics (microstructure, thermal stability, secondary structure, and crystallinity) and functional properties (protein solubility, water and oil holding capacities, as well as emulsifying and foaming properties) were investigated. <i>Spirulina</i> biomass resulted in a high extraction yield (37%), giving a protein isolate containing 90% of proteins. Both <i>Spirulina</i> and <i>Chlorella</i> protein extracts displayed high thermal stability. FTIR analysis revealed a clear difference in the secondary structure of the protein extracts. A slight difference in microstructure was noted between the two proteins, but both had small particle sizes and uniform dispersity. <i>Spirulina</i> proteins were more crystalline (53%) than the <i>Chlorella</i> proteins (36%). <i>Spirulina</i> showed better functional properties (protein solubility, emulsifying, and foaming properties) compared to <i>Chlorella</i>. We observed that the <i>Spirulina</i> protein had more water-holding capacity than the <i>Chlorella</i> protein, while the latter also showed appreciable oil-holding capacity. These findings suggest that the microalgal proteins could be useful in the food industry.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"439 - 452"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical and Functional Properties of Spirulina and Chlorella Proteins Obtained by Iso-Electric Precipitation\",\"authors\":\"Yakoub Ladjal-Ettoumi, Lina Hadjer Douik, Meriem Hamadi, Johar Amin Ahmed Abdullah, Zakaria Cherifi, Mohamed Nadir Keddar, Mahammed Zidour, Akmal Nazir\",\"doi\":\"10.1007/s11483-024-09836-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, microalgae proteins (<i>Spirulina</i> and <i>Chlorella</i>) were extracted, characterized, and investigated for their potential techno-functionalities. The proteins from the microalgae biomass were extracted by alkaline solubilization followed by iso-electric precipitation. Subsequently, their physicochemical characteristics (microstructure, thermal stability, secondary structure, and crystallinity) and functional properties (protein solubility, water and oil holding capacities, as well as emulsifying and foaming properties) were investigated. <i>Spirulina</i> biomass resulted in a high extraction yield (37%), giving a protein isolate containing 90% of proteins. Both <i>Spirulina</i> and <i>Chlorella</i> protein extracts displayed high thermal stability. FTIR analysis revealed a clear difference in the secondary structure of the protein extracts. A slight difference in microstructure was noted between the two proteins, but both had small particle sizes and uniform dispersity. <i>Spirulina</i> proteins were more crystalline (53%) than the <i>Chlorella</i> proteins (36%). <i>Spirulina</i> showed better functional properties (protein solubility, emulsifying, and foaming properties) compared to <i>Chlorella</i>. We observed that the <i>Spirulina</i> protein had more water-holding capacity than the <i>Chlorella</i> protein, while the latter also showed appreciable oil-holding capacity. These findings suggest that the microalgal proteins could be useful in the food industry.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"19 2\",\"pages\":\"439 - 452\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09836-8\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09836-8","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Physicochemical and Functional Properties of Spirulina and Chlorella Proteins Obtained by Iso-Electric Precipitation
In this study, microalgae proteins (Spirulina and Chlorella) were extracted, characterized, and investigated for their potential techno-functionalities. The proteins from the microalgae biomass were extracted by alkaline solubilization followed by iso-electric precipitation. Subsequently, their physicochemical characteristics (microstructure, thermal stability, secondary structure, and crystallinity) and functional properties (protein solubility, water and oil holding capacities, as well as emulsifying and foaming properties) were investigated. Spirulina biomass resulted in a high extraction yield (37%), giving a protein isolate containing 90% of proteins. Both Spirulina and Chlorella protein extracts displayed high thermal stability. FTIR analysis revealed a clear difference in the secondary structure of the protein extracts. A slight difference in microstructure was noted between the two proteins, but both had small particle sizes and uniform dispersity. Spirulina proteins were more crystalline (53%) than the Chlorella proteins (36%). Spirulina showed better functional properties (protein solubility, emulsifying, and foaming properties) compared to Chlorella. We observed that the Spirulina protein had more water-holding capacity than the Chlorella protein, while the latter also showed appreciable oil-holding capacity. These findings suggest that the microalgal proteins could be useful in the food industry.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.