{"title":"用混合埃洛石纳米管对膜生物反应器进行表面改性,以处理含重金属的工业废水","authors":"Sajjad Gorjizadeh, Masoud Rahbari-Sisakht, Daryoush Emadzadeh","doi":"10.1007/s13726-024-01298-6","DOIUrl":null,"url":null,"abstract":"<div><p>Surface modification of polysulfone (PSF) membrane bioreactor using hybrid halloysite nanotubes (HHNTs) and dendrimers was investigated for industrial wastewater treatment containing heavy metals. Petroleum wastewater was obtained from liquefied gas plant 1200 (NGL 1200) in Gachsaran, Iran. Polysulfone)PSF( membranes were fabricated using hybrid halloysite nanotubes and dendrimers at different concentrations of 0, 0.5, 1, and 2 wt% and identified with certain codes of PSF, HNT0.5, HNT1, and HNT2, respectively. The fabricated membranes were characterized by FTIR, AFM, EDX, SEM, and contact angle analyses. The contact angle decreased as a result of HNT loading in PSF membranes, which was due to the enhancement of the membrane hydrophobicity. The heavy metal rejection in the HNT1 membrane for Cu (II), Pb (II), Ni (II), and Zn (II) was 83.25%, 98.79%, 81.09%, and 85.98%, respectively. Also, the rejection of Ni (II) in PSF was 38.24% which showed a lower amount. Based on the results, the HNT1 membrane which was fabricated using 1 wt% of the hybrid halloysite nanotubes showed the best performance to heavy metals removal from industrial effluents.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface modification of membrane bioreactor by hybrid halloysite nanotubes for industrial wastewater treatment containing heavy metals\",\"authors\":\"Sajjad Gorjizadeh, Masoud Rahbari-Sisakht, Daryoush Emadzadeh\",\"doi\":\"10.1007/s13726-024-01298-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface modification of polysulfone (PSF) membrane bioreactor using hybrid halloysite nanotubes (HHNTs) and dendrimers was investigated for industrial wastewater treatment containing heavy metals. Petroleum wastewater was obtained from liquefied gas plant 1200 (NGL 1200) in Gachsaran, Iran. Polysulfone)PSF( membranes were fabricated using hybrid halloysite nanotubes and dendrimers at different concentrations of 0, 0.5, 1, and 2 wt% and identified with certain codes of PSF, HNT0.5, HNT1, and HNT2, respectively. The fabricated membranes were characterized by FTIR, AFM, EDX, SEM, and contact angle analyses. The contact angle decreased as a result of HNT loading in PSF membranes, which was due to the enhancement of the membrane hydrophobicity. The heavy metal rejection in the HNT1 membrane for Cu (II), Pb (II), Ni (II), and Zn (II) was 83.25%, 98.79%, 81.09%, and 85.98%, respectively. Also, the rejection of Ni (II) in PSF was 38.24% which showed a lower amount. Based on the results, the HNT1 membrane which was fabricated using 1 wt% of the hybrid halloysite nanotubes showed the best performance to heavy metals removal from industrial effluents.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01298-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01298-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Surface modification of membrane bioreactor by hybrid halloysite nanotubes for industrial wastewater treatment containing heavy metals
Surface modification of polysulfone (PSF) membrane bioreactor using hybrid halloysite nanotubes (HHNTs) and dendrimers was investigated for industrial wastewater treatment containing heavy metals. Petroleum wastewater was obtained from liquefied gas plant 1200 (NGL 1200) in Gachsaran, Iran. Polysulfone)PSF( membranes were fabricated using hybrid halloysite nanotubes and dendrimers at different concentrations of 0, 0.5, 1, and 2 wt% and identified with certain codes of PSF, HNT0.5, HNT1, and HNT2, respectively. The fabricated membranes were characterized by FTIR, AFM, EDX, SEM, and contact angle analyses. The contact angle decreased as a result of HNT loading in PSF membranes, which was due to the enhancement of the membrane hydrophobicity. The heavy metal rejection in the HNT1 membrane for Cu (II), Pb (II), Ni (II), and Zn (II) was 83.25%, 98.79%, 81.09%, and 85.98%, respectively. Also, the rejection of Ni (II) in PSF was 38.24% which showed a lower amount. Based on the results, the HNT1 membrane which was fabricated using 1 wt% of the hybrid halloysite nanotubes showed the best performance to heavy metals removal from industrial effluents.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.