利用深水 OBS 肖尔特波数据反演海洋沉积物的剪切波速度

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Applied Geophysics Pub Date : 2024-03-21 DOI:10.1007/s11770-024-1073-z
Peng-Fei Yu, Jia-Meng Jiang, Jian-Hua Geng, Bao-Jin Zhang
{"title":"利用深水 OBS 肖尔特波数据反演海洋沉积物的剪切波速度","authors":"Peng-Fei Yu, Jia-Meng Jiang, Jian-Hua Geng, Bao-Jin Zhang","doi":"10.1007/s11770-024-1073-z","DOIUrl":null,"url":null,"abstract":"<p>Acoustic velocity varies in deep-water environments, and the variable-velocity seawater can affect the dispersion characteristics of Scholte wave. To improve the accuracy of inversion, a horizontal layered-seawater and layered-seabed (HLSLS) model is established with continuously varying velocities for seabed S-wave velocity inversion using Scholte wave. First, we deduced the Scholte wave dispersion equation and the amplitude-depth equation of the HLSLS model based on wave theory. Then, with the real acoustic velocity of the seawater and submarine sediments parameters of the Shenhu area in the South China Sea, we analyzed the influence of variable-velocity seawater on the dispersion characteristics of Scholte wave. Finally, we performed two-dimensional (2D) S-wave velocity inversion on the field OBS multi-component data in the South China Sea. The results showed that the variation of seawater acoustic velocity had a certain influence on the dispersion characteristics of Scholte wave in deep water. The accuracy and practicality of our method were verified through numerical and filed data experiments.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"86 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear wave velocity inversion of marine sediments using deep-water OBS Scholte-wave data\",\"authors\":\"Peng-Fei Yu, Jia-Meng Jiang, Jian-Hua Geng, Bao-Jin Zhang\",\"doi\":\"10.1007/s11770-024-1073-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acoustic velocity varies in deep-water environments, and the variable-velocity seawater can affect the dispersion characteristics of Scholte wave. To improve the accuracy of inversion, a horizontal layered-seawater and layered-seabed (HLSLS) model is established with continuously varying velocities for seabed S-wave velocity inversion using Scholte wave. First, we deduced the Scholte wave dispersion equation and the amplitude-depth equation of the HLSLS model based on wave theory. Then, with the real acoustic velocity of the seawater and submarine sediments parameters of the Shenhu area in the South China Sea, we analyzed the influence of variable-velocity seawater on the dispersion characteristics of Scholte wave. Finally, we performed two-dimensional (2D) S-wave velocity inversion on the field OBS multi-component data in the South China Sea. The results showed that the variation of seawater acoustic velocity had a certain influence on the dispersion characteristics of Scholte wave in deep water. The accuracy and practicality of our method were verified through numerical and filed data experiments.</p>\",\"PeriodicalId\":55500,\"journal\":{\"name\":\"Applied Geophysics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11770-024-1073-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1073-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

深水环境中的声速是变化的,变速海水会影响肖尔特波的频散特性。为了提高反演的精度,建立了水平分层海水和分层海底(HLSLS)模型,利用连续变化的速度对海底 S 波进行肖尔特波速度反演。首先,我们根据波浪理论推导出 Scholte 波频散方程和 HLSLS 模型的幅深方程。然后,结合南海神狐海域海水实际声速和海底沉积物参数,分析了变速海水对 Scholte 波频散特性的影响。最后,我们对南海现场 OBS 多分量数据进行了二维 S 波速度反演。结果表明,海水声速的变化对深水肖尔特波的频散特性有一定的影响。通过数值和锉刀数据实验验证了我们方法的准确性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shear wave velocity inversion of marine sediments using deep-water OBS Scholte-wave data

Acoustic velocity varies in deep-water environments, and the variable-velocity seawater can affect the dispersion characteristics of Scholte wave. To improve the accuracy of inversion, a horizontal layered-seawater and layered-seabed (HLSLS) model is established with continuously varying velocities for seabed S-wave velocity inversion using Scholte wave. First, we deduced the Scholte wave dispersion equation and the amplitude-depth equation of the HLSLS model based on wave theory. Then, with the real acoustic velocity of the seawater and submarine sediments parameters of the Shenhu area in the South China Sea, we analyzed the influence of variable-velocity seawater on the dispersion characteristics of Scholte wave. Finally, we performed two-dimensional (2D) S-wave velocity inversion on the field OBS multi-component data in the South China Sea. The results showed that the variation of seawater acoustic velocity had a certain influence on the dispersion characteristics of Scholte wave in deep water. The accuracy and practicality of our method were verified through numerical and filed data experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
期刊最新文献
Earthquake detection probabilities and completeness magnitude in the northern margin of the Ordos Block Multi-well wavelet-synchronized inversion based on particle swarm optimization Low-Frequency Sweep Design—A Case Study in Middle East Desert Environments Research on Paleoearthquake and Recurrence Characteristics of Strong Earthquakes in Active Faults of Mainland China Capacity matching and optimization of solar-ground source heat pump coupling systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1