E. A. Olenich, V. V. Gorodov, S. A. Milenin, G. V. Cherkaev, D. A. Khanin, M. I. Buzin, A. M. Muzafarov
{"title":"抗热冻性聚[二甲基(甲基苄基)硅氧烷]:合成与特性","authors":"E. A. Olenich, V. V. Gorodov, S. A. Milenin, G. V. Cherkaev, D. A. Khanin, M. I. Buzin, A. M. Muzafarov","doi":"10.1134/S1560090424600050","DOIUrl":null,"url":null,"abstract":"<p>A series of poly[dimethyl(methylbenzyl)siloxanes] with different content of the methylbenzylsiloxane fragments have been synthesized. Structure of the polymers has been confirmed by means of <sup>1</sup>Н and <sup>29</sup>Si NMR spectroscopy. Thermal properties of the polymers have been investigated by means of differential scanning calorimetry and thermogravimetric analysis. It has been found that the copolymer crystallization is suppressed at the content of the methylbenzylsiloxane fragments on the copolymer of 3 mol % and higher, while the glass transition temperature is only insignificantly shifted towards the positive range. The copolymers have exhibited high temperature resistance and can be used over a wide temperature range.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 6","pages":"812 - 820"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermofrost-Resistant Poly[dimethyl(methylbenzyl)siloxanes]: Synthesis and Properties\",\"authors\":\"E. A. Olenich, V. V. Gorodov, S. A. Milenin, G. V. Cherkaev, D. A. Khanin, M. I. Buzin, A. M. Muzafarov\",\"doi\":\"10.1134/S1560090424600050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A series of poly[dimethyl(methylbenzyl)siloxanes] with different content of the methylbenzylsiloxane fragments have been synthesized. Structure of the polymers has been confirmed by means of <sup>1</sup>Н and <sup>29</sup>Si NMR spectroscopy. Thermal properties of the polymers have been investigated by means of differential scanning calorimetry and thermogravimetric analysis. It has been found that the copolymer crystallization is suppressed at the content of the methylbenzylsiloxane fragments on the copolymer of 3 mol % and higher, while the glass transition temperature is only insignificantly shifted towards the positive range. The copolymers have exhibited high temperature resistance and can be used over a wide temperature range.</p>\",\"PeriodicalId\":739,\"journal\":{\"name\":\"Polymer Science, Series B\",\"volume\":\"65 6\",\"pages\":\"812 - 820\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560090424600050\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090424600050","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Thermofrost-Resistant Poly[dimethyl(methylbenzyl)siloxanes]: Synthesis and Properties
A series of poly[dimethyl(methylbenzyl)siloxanes] with different content of the methylbenzylsiloxane fragments have been synthesized. Structure of the polymers has been confirmed by means of 1Н and 29Si NMR spectroscopy. Thermal properties of the polymers have been investigated by means of differential scanning calorimetry and thermogravimetric analysis. It has been found that the copolymer crystallization is suppressed at the content of the methylbenzylsiloxane fragments on the copolymer of 3 mol % and higher, while the glass transition temperature is only insignificantly shifted towards the positive range. The copolymers have exhibited high temperature resistance and can be used over a wide temperature range.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed