在有争议的动态环境中运行的弹性合作多代理强化学习模型的模拟和实验架构

Ishan Honhaga, Claudia Szabo
{"title":"在有争议的动态环境中运行的弹性合作多代理强化学习模型的模拟和实验架构","authors":"Ishan Honhaga, Claudia Szabo","doi":"10.1177/00375497241232432","DOIUrl":null,"url":null,"abstract":"Cooperative multiagent reinforcement learning approaches are increasingly being used to make decisions in contested and dynamic environments, which tend to be wildly different from the environments used to train them. As such, there is a need for a more in-depth understanding of their resilience and robustness in conditions such as network partitions, node failures, or attacks. In this article, we propose a modeling and simulation framework that explores the resilience of four c-MARL models when faced with different types of attacks, and the impact that training with different perturbations has on the effectiveness of these attacks. We show that c-MARL approaches are highly vulnerable to perturbations of observation, action reward, and communication, showing more than 80% drop in the performance from the baseline. We also show that appropriate training with perturbations can dramatically improve performance in some cases, however, can also result in overfitting, making the models less resilient against other attacks. This is a first step toward a more in-depth understanding of the resilience c-MARL models and the effect that contested environments can have on their behavior and toward resilience of complex systems in general.","PeriodicalId":501452,"journal":{"name":"SIMULATION","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation and experimentation architecture for resilient cooperative multiagent reinforcement learning models operating in contested and dynamic environments\",\"authors\":\"Ishan Honhaga, Claudia Szabo\",\"doi\":\"10.1177/00375497241232432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative multiagent reinforcement learning approaches are increasingly being used to make decisions in contested and dynamic environments, which tend to be wildly different from the environments used to train them. As such, there is a need for a more in-depth understanding of their resilience and robustness in conditions such as network partitions, node failures, or attacks. In this article, we propose a modeling and simulation framework that explores the resilience of four c-MARL models when faced with different types of attacks, and the impact that training with different perturbations has on the effectiveness of these attacks. We show that c-MARL approaches are highly vulnerable to perturbations of observation, action reward, and communication, showing more than 80% drop in the performance from the baseline. We also show that appropriate training with perturbations can dramatically improve performance in some cases, however, can also result in overfitting, making the models less resilient against other attacks. This is a first step toward a more in-depth understanding of the resilience c-MARL models and the effect that contested environments can have on their behavior and toward resilience of complex systems in general.\",\"PeriodicalId\":501452,\"journal\":{\"name\":\"SIMULATION\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIMULATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497241232432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIMULATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00375497241232432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合作式多代理强化学习方法越来越多地被用于在有争议的动态环境中做出决策,而这些环境往往与用于训练它们的环境大相径庭。因此,我们需要更深入地了解它们在网络分区、节点故障或攻击等情况下的弹性和鲁棒性。在本文中,我们提出了一个建模和仿真框架,探讨了四种 c-MARL 模型在面对不同类型攻击时的恢复能力,以及使用不同扰动进行训练对这些攻击的有效性产生的影响。我们的研究表明,c-MARL 方法极易受到观察、行动奖励和通信扰动的影响,其性能比基线下降了 80% 以上。我们还表明,在某些情况下,适当的扰动训练可以显著提高性能,但也会导致过度拟合,从而降低模型抵御其他攻击的能力。这是更深入地了解 c-MARL 模型的恢复能力、竞争环境对其行为的影响以及复杂系统总体恢复能力的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simulation and experimentation architecture for resilient cooperative multiagent reinforcement learning models operating in contested and dynamic environments
Cooperative multiagent reinforcement learning approaches are increasingly being used to make decisions in contested and dynamic environments, which tend to be wildly different from the environments used to train them. As such, there is a need for a more in-depth understanding of their resilience and robustness in conditions such as network partitions, node failures, or attacks. In this article, we propose a modeling and simulation framework that explores the resilience of four c-MARL models when faced with different types of attacks, and the impact that training with different perturbations has on the effectiveness of these attacks. We show that c-MARL approaches are highly vulnerable to perturbations of observation, action reward, and communication, showing more than 80% drop in the performance from the baseline. We also show that appropriate training with perturbations can dramatically improve performance in some cases, however, can also result in overfitting, making the models less resilient against other attacks. This is a first step toward a more in-depth understanding of the resilience c-MARL models and the effect that contested environments can have on their behavior and toward resilience of complex systems in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulating cyberattacks with extended Petri nets Special Issue: Engineering of Dependable Digital Twins Calibration method for microscopic traffic simulation considering lane difference Serial and parallel algorithms for short time horizon multi-attribute queries on stochastic multi-agent systems Agent-based simulation of citizens’ satisfaction in smart cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1