{"title":"在小分子原料药生产中采用混合生产技术,推动可持续发展","authors":"Svetlana Borukhova, Robert Sebastian Rönnback","doi":"10.1007/s41981-024-00325-0","DOIUrl":null,"url":null,"abstract":"<div><p>Pharmaceutical industry is challenged by the rising development costs, strict regulatory and environmental requirements all while racing to deliver complex molecules to market. The need to be the first-in-class brings about shorter lifetime to the launched products in favor of better functioning followers. In addition, a shift from large volume blockbusters towards small volume production of complex molecules presents a unique opportunity to challenge the status quo in pharmaceutical manufacturing. Traditional batch manufacturing, while foundational, presents hurdles in scaling and efficiency, particularly for demanding reactions. Continuous manufacturing has emerged as a promising alternative, delivering better control and uniformity of operating conditions, mirroring the efficiencies found in small-scale batch reactors. However, continuous manufacturing is not universally applicable. As a solution, a combination of the two into hybrid manufacturing processes, appears to fill this gap effectively. While the concept of hybrid manufacturing is not new, the current perspective adds an additional angle to the integration of both technologies. Authors propose to sustain the continuity of the operation for batch mode processes by decreasing the reactor size and increasing the level of automation. Furthermore, modular fabrication of smaller-footprint technological platforms is expected to synergize other advancements in the field, such as digitalization, automation, and standardization. As a result, a leap towards the implementation of advanced manufacturing to drive sustainability in pharmaceutical industry is more tangible than ever.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"303 - 312"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driving sustainability through adoption of hybrid manufacturing in small molecule API production\",\"authors\":\"Svetlana Borukhova, Robert Sebastian Rönnback\",\"doi\":\"10.1007/s41981-024-00325-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pharmaceutical industry is challenged by the rising development costs, strict regulatory and environmental requirements all while racing to deliver complex molecules to market. The need to be the first-in-class brings about shorter lifetime to the launched products in favor of better functioning followers. In addition, a shift from large volume blockbusters towards small volume production of complex molecules presents a unique opportunity to challenge the status quo in pharmaceutical manufacturing. Traditional batch manufacturing, while foundational, presents hurdles in scaling and efficiency, particularly for demanding reactions. Continuous manufacturing has emerged as a promising alternative, delivering better control and uniformity of operating conditions, mirroring the efficiencies found in small-scale batch reactors. However, continuous manufacturing is not universally applicable. As a solution, a combination of the two into hybrid manufacturing processes, appears to fill this gap effectively. While the concept of hybrid manufacturing is not new, the current perspective adds an additional angle to the integration of both technologies. Authors propose to sustain the continuity of the operation for batch mode processes by decreasing the reactor size and increasing the level of automation. Furthermore, modular fabrication of smaller-footprint technological platforms is expected to synergize other advancements in the field, such as digitalization, automation, and standardization. As a result, a leap towards the implementation of advanced manufacturing to drive sustainability in pharmaceutical industry is more tangible than ever.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 1\",\"pages\":\"303 - 312\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-024-00325-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00325-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Driving sustainability through adoption of hybrid manufacturing in small molecule API production
Pharmaceutical industry is challenged by the rising development costs, strict regulatory and environmental requirements all while racing to deliver complex molecules to market. The need to be the first-in-class brings about shorter lifetime to the launched products in favor of better functioning followers. In addition, a shift from large volume blockbusters towards small volume production of complex molecules presents a unique opportunity to challenge the status quo in pharmaceutical manufacturing. Traditional batch manufacturing, while foundational, presents hurdles in scaling and efficiency, particularly for demanding reactions. Continuous manufacturing has emerged as a promising alternative, delivering better control and uniformity of operating conditions, mirroring the efficiencies found in small-scale batch reactors. However, continuous manufacturing is not universally applicable. As a solution, a combination of the two into hybrid manufacturing processes, appears to fill this gap effectively. While the concept of hybrid manufacturing is not new, the current perspective adds an additional angle to the integration of both technologies. Authors propose to sustain the continuity of the operation for batch mode processes by decreasing the reactor size and increasing the level of automation. Furthermore, modular fabrication of smaller-footprint technological platforms is expected to synergize other advancements in the field, such as digitalization, automation, and standardization. As a result, a leap towards the implementation of advanced manufacturing to drive sustainability in pharmaceutical industry is more tangible than ever.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.