研究光纤激光器与 Si3N4 片材之间的相互作用,利用多环策略钻凿方形微孔

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Advanced Manufacturing Technology Pub Date : 2024-03-21 DOI:10.1007/s00170-024-13383-4
Shih-Feng Tseng, Guan-Lin Chen, Chien-Yao Huang, Donyau Chiang, Chil-Chyuan Kuo
{"title":"研究光纤激光器与 Si3N4 片材之间的相互作用,利用多环策略钻凿方形微孔","authors":"Shih-Feng Tseng, Guan-Lin Chen, Chien-Yao Huang, Donyau Chiang, Chil-Chyuan Kuo","doi":"10.1007/s00170-024-13383-4","DOIUrl":null,"url":null,"abstract":"<p>A high pulsed fiber laser was utilized to drill square microholes in Si<sub>3</sub>N<sub>4</sub> sheets in an atmospheric environment. Various processing parameters including scan spacing, number of scan passes, and number of multi-ring paths with a multi-ring strategy were adjusted to laser-drill Si<sub>3</sub>N<sub>4</sub> sheets. The geometric characteristics of laser-drilled square microholes with shoulder height, taper angle, and corner radius were measured using a laser scanning microscope. X-ray diffraction was applied to examine the residual stress of the Si<sub>3</sub>N<sub>4</sub> sheets before and after laser drilling. Moreover, the heat-affected zone and element content were examined using a scanning electron microscope. The experimental results exhibited that the optimal shoulder height of the square microhole drilled with the multi-ring strategy was 6.67 ± 0.21 μm, which was approximately 77% lower than that of 29.05 ± 10.95 μm for the square microhole drilled with the single-ring strategy. Moreover, the residual stresses of the original Si<sub>3</sub>N<sub>4</sub> sheet and the square microholes laser-drilled by single-ring and multi-ring strategies were − 181.2 ± 41, 164.5 ± 31.9, and 104.6 ± 7.8 MPa, respectively. The proposed laser drilling technology with the multi-ring strategy can be widely used in the semiconductor industry for probe cards.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2016 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of interactions between fiber lasers and Si3N4 sheets for drilling square microholes with multi-ring strategy\",\"authors\":\"Shih-Feng Tseng, Guan-Lin Chen, Chien-Yao Huang, Donyau Chiang, Chil-Chyuan Kuo\",\"doi\":\"10.1007/s00170-024-13383-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A high pulsed fiber laser was utilized to drill square microholes in Si<sub>3</sub>N<sub>4</sub> sheets in an atmospheric environment. Various processing parameters including scan spacing, number of scan passes, and number of multi-ring paths with a multi-ring strategy were adjusted to laser-drill Si<sub>3</sub>N<sub>4</sub> sheets. The geometric characteristics of laser-drilled square microholes with shoulder height, taper angle, and corner radius were measured using a laser scanning microscope. X-ray diffraction was applied to examine the residual stress of the Si<sub>3</sub>N<sub>4</sub> sheets before and after laser drilling. Moreover, the heat-affected zone and element content were examined using a scanning electron microscope. The experimental results exhibited that the optimal shoulder height of the square microhole drilled with the multi-ring strategy was 6.67 ± 0.21 μm, which was approximately 77% lower than that of 29.05 ± 10.95 μm for the square microhole drilled with the single-ring strategy. Moreover, the residual stresses of the original Si<sub>3</sub>N<sub>4</sub> sheet and the square microholes laser-drilled by single-ring and multi-ring strategies were − 181.2 ± 41, 164.5 ± 31.9, and 104.6 ± 7.8 MPa, respectively. The proposed laser drilling technology with the multi-ring strategy can be widely used in the semiconductor industry for probe cards.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13383-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13383-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用高脉冲光纤激光器在大气环境下在 Si3N4 片材上钻出方形微孔。调整了各种加工参数,包括扫描间距、扫描次数和采用多环策略的多环路径数,以对 Si3N4 片材进行激光钻孔。使用激光扫描显微镜测量了激光钻出的方形微孔的几何特征,包括肩高、锥角和角半径。用 X 射线衍射法检测了激光钻孔前后 Si3N4 片材的残余应力。此外,还使用扫描电子显微镜检查了热影响区和元素含量。实验结果表明,采用多环策略钻出的方形微孔的最佳肩高为 6.67 ± 0.21 μm,比采用单环策略钻出的方形微孔的 29.05 ± 10.95 μm 低约 77%。此外,原始 Si3N4 板材和采用单环和多环策略激光钻孔的方形微孔的残余应力分别为 - 181.2 ± 41、164.5 ± 31.9 和 104.6 ± 7.8 MPa。所提出的多环激光钻孔技术可广泛应用于半导体行业的探针卡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of interactions between fiber lasers and Si3N4 sheets for drilling square microholes with multi-ring strategy

A high pulsed fiber laser was utilized to drill square microholes in Si3N4 sheets in an atmospheric environment. Various processing parameters including scan spacing, number of scan passes, and number of multi-ring paths with a multi-ring strategy were adjusted to laser-drill Si3N4 sheets. The geometric characteristics of laser-drilled square microholes with shoulder height, taper angle, and corner radius were measured using a laser scanning microscope. X-ray diffraction was applied to examine the residual stress of the Si3N4 sheets before and after laser drilling. Moreover, the heat-affected zone and element content were examined using a scanning electron microscope. The experimental results exhibited that the optimal shoulder height of the square microhole drilled with the multi-ring strategy was 6.67 ± 0.21 μm, which was approximately 77% lower than that of 29.05 ± 10.95 μm for the square microhole drilled with the single-ring strategy. Moreover, the residual stresses of the original Si3N4 sheet and the square microholes laser-drilled by single-ring and multi-ring strategies were − 181.2 ± 41, 164.5 ± 31.9, and 104.6 ± 7.8 MPa, respectively. The proposed laser drilling technology with the multi-ring strategy can be widely used in the semiconductor industry for probe cards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
期刊最新文献
Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality On a simulation-based chatter prediction system by integrating relative entropy and dynamic cutting force Modeling of the motorized spindle temperature field considering the thermos-mechanical coupling on constant pressure preloaded bearings Multi-layer solid-state ultrasonic additive manufacturing of aluminum/copper: local properties and texture Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1