{"title":"刚刚过去的投影鼠集定理","authors":"Mitch Rudominer","doi":"10.1142/s0219061324500144","DOIUrl":null,"url":null,"abstract":"<p>We identify a particular mouse, <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup></math></span><span></span>, the minimal ladder mouse, that sits in the mouse order just past <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>♯</mi></mrow></msubsup></math></span><span></span> for all <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>, and we show that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span>, the set of reals that are <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span></span> in a countable ordinal. Thus <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> is a mouse set.</p><p>This is analogous to the fact that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span> where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup></math></span><span></span> is the sharp for the minimal inner model with a Woodin cardinal, and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span> is the set of reals that are <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span></span> in a countable ordinal.</p><p>More generally <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\"false\">+</mo><mn>3</mn></mrow></msub></math></span><span></span>. The mouse <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup></math></span><span></span> and the set <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> compose the next natural pair to consider in this series of results. Thus we are proving the mouse set theorem just past projective.</p><p>Some of this is not new. <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup><mo>⊆</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> was known in the 1990s. But <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo>⊆</mo><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup></math></span><span></span> was open until Woodin found a proof in 2018. The main goal of this paper is to give Woodin’s proof.</p>","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mouse set theorem just past projective\",\"authors\":\"Mitch Rudominer\",\"doi\":\"10.1142/s0219061324500144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We identify a particular mouse, <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">ld</mtext></mstyle></mrow></msup></math></span><span></span>, the minimal ladder mouse, that sits in the mouse order just past <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>♯</mi></mrow></msubsup></math></span><span></span> for all <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span>, and we show that <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi><mspace width=\\\".17em\\\"></mspace><mo stretchy=\\\"false\\\">∩</mo><mspace width=\\\".17em\\\"></mspace><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">ld</mtext></mstyle></mrow></msup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msub></math></span><span></span>, the set of reals that are <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mi>ω</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span></span> in a countable ordinal. Thus <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> is a mouse set.</p><p>This is analogous to the fact that <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi><mspace width=\\\".17em\\\"></mspace><mo stretchy=\\\"false\\\">∩</mo><mspace width=\\\".17em\\\"></mspace><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span> where <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup></math></span><span></span> is the sharp for the minimal inner model with a Woodin cardinal, and <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span> is the set of reals that are <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span></span> in a countable ordinal.</p><p>More generally <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi><mspace width=\\\".17em\\\"></mspace><mo stretchy=\\\"false\\\">∩</mo><mspace width=\\\".17em\\\"></mspace><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>3</mn></mrow></msub></math></span><span></span>. The mouse <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">ld</mtext></mstyle></mrow></msup></math></span><span></span> and the set <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> compose the next natural pair to consider in this series of results. Thus we are proving the mouse set theorem just past projective.</p><p>Some of this is not new. <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi><mspace width=\\\".17em\\\"></mspace><mo stretchy=\\\"false\\\">∩</mo><mspace width=\\\".17em\\\"></mspace><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">ld</mtext></mstyle></mrow></msup><mo>⊆</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> was known in the 1990s. But <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msub><mo>⊆</mo><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">ld</mtext></mstyle></mrow></msup></math></span><span></span> was open until Woodin found a proof in 2018. The main goal of this paper is to give Woodin’s proof.</p>\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061324500144\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500144","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
We identify a particular mouse, , the minimal ladder mouse, that sits in the mouse order just past for all , and we show that , the set of reals that are in a countable ordinal. Thus is a mouse set.
This is analogous to the fact that where is the sharp for the minimal inner model with a Woodin cardinal, and is the set of reals that are in a countable ordinal.
More generally . The mouse and the set compose the next natural pair to consider in this series of results. Thus we are proving the mouse set theorem just past projective.
Some of this is not new. was known in the 1990s. But was open until Woodin found a proof in 2018. The main goal of this paper is to give Woodin’s proof.
期刊介绍:
The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.