Jie Jia, Leyou Yang, Jian Chen, Lidao Ma, Xingwei Wang
{"title":"MEC 和 RIS 辅助无线 VR 网络的在线延迟优化","authors":"Jie Jia, Leyou Yang, Jian Chen, Lidao Ma, Xingwei Wang","doi":"10.1007/s11276-024-03706-4","DOIUrl":null,"url":null,"abstract":"<p>As wireless networks continue to advance, virtual reality (VR) transmission over wireless connections is progressively transitioning from concept to practical application. Although this technology can significantly enhance the VR user experience, its development bottleneck lies in the computing capacity of devices and transmission latency. Considering the limited computational resources of VR devices for rendering tasks, multi-access edge computing (MEC) servers are introduced to provide powerful computing capabilities. To cope with transmission latency, reconfigurable intelligent surface (RIS) enhances links between base stations (BSs) and users. Based on these two technologies, we propose a RIS-assisted VR streaming model, where BSs are equipped with MEC servers to assist data rendering. Firstly, the user association, power control, and RIS phase shift optimization problems in the VR transmission system are jointly modeled and analyzed, establishing a long-term minimization of the interaction delay model. Secondly, by modeling the optimization problem as a Markov decision process (MDP), a joint optimization framework based on multi-agent deep reinforcement learning (MADRL) is proposed. In this framework, we have separately designed two dedicated algorithms for discrete and continuous variables. Furthermore, multiple agents can provide feedback based on user experience and cooperate with each other to improve the joint strategy. Finally, the performance and superiority of the proposed solution and algorithm are validated through simulation experiments in different application scenarios.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"17 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online delay optimization for MEC and RIS-assisted wireless VR networks\",\"authors\":\"Jie Jia, Leyou Yang, Jian Chen, Lidao Ma, Xingwei Wang\",\"doi\":\"10.1007/s11276-024-03706-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As wireless networks continue to advance, virtual reality (VR) transmission over wireless connections is progressively transitioning from concept to practical application. Although this technology can significantly enhance the VR user experience, its development bottleneck lies in the computing capacity of devices and transmission latency. Considering the limited computational resources of VR devices for rendering tasks, multi-access edge computing (MEC) servers are introduced to provide powerful computing capabilities. To cope with transmission latency, reconfigurable intelligent surface (RIS) enhances links between base stations (BSs) and users. Based on these two technologies, we propose a RIS-assisted VR streaming model, where BSs are equipped with MEC servers to assist data rendering. Firstly, the user association, power control, and RIS phase shift optimization problems in the VR transmission system are jointly modeled and analyzed, establishing a long-term minimization of the interaction delay model. Secondly, by modeling the optimization problem as a Markov decision process (MDP), a joint optimization framework based on multi-agent deep reinforcement learning (MADRL) is proposed. In this framework, we have separately designed two dedicated algorithms for discrete and continuous variables. Furthermore, multiple agents can provide feedback based on user experience and cooperate with each other to improve the joint strategy. Finally, the performance and superiority of the proposed solution and algorithm are validated through simulation experiments in different application scenarios.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03706-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03706-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Online delay optimization for MEC and RIS-assisted wireless VR networks
As wireless networks continue to advance, virtual reality (VR) transmission over wireless connections is progressively transitioning from concept to practical application. Although this technology can significantly enhance the VR user experience, its development bottleneck lies in the computing capacity of devices and transmission latency. Considering the limited computational resources of VR devices for rendering tasks, multi-access edge computing (MEC) servers are introduced to provide powerful computing capabilities. To cope with transmission latency, reconfigurable intelligent surface (RIS) enhances links between base stations (BSs) and users. Based on these two technologies, we propose a RIS-assisted VR streaming model, where BSs are equipped with MEC servers to assist data rendering. Firstly, the user association, power control, and RIS phase shift optimization problems in the VR transmission system are jointly modeled and analyzed, establishing a long-term minimization of the interaction delay model. Secondly, by modeling the optimization problem as a Markov decision process (MDP), a joint optimization framework based on multi-agent deep reinforcement learning (MADRL) is proposed. In this framework, we have separately designed two dedicated algorithms for discrete and continuous variables. Furthermore, multiple agents can provide feedback based on user experience and cooperate with each other to improve the joint strategy. Finally, the performance and superiority of the proposed solution and algorithm are validated through simulation experiments in different application scenarios.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.